Q. and A. With Cynthia Dwork in the New York Times: “Algorithms have become one of the most powerful arbiters in our lives. They make decisions about the news we read, the jobs we get, the people we meet, the schools we attend and the ads we see.
Yet there is growing evidence that algorithms and other types of software can discriminate. The people who write them incorporate their biases, and algorithms often learn from human behavior, so they reflect the biases we hold. For instance, research has shown that ad-targeting algorithms have shown ads for high-paying jobs to men but not women, and ads for high-interest loans to people in low-income neighborhoods.
Cynthia Dwork, a computer scientist at Microsoft Research in Silicon Valley, is one of the leading thinkers on these issues. In an Upshot interview, which has been edited, she discussed how algorithms learn to discriminate, who’s responsible when they do, and the trade-offs between fairness and privacy.
Q: Some people have argued that algorithms eliminate discriminationbecause they make decisions based on data, free of human bias. Others say algorithms reflect and perpetuate human biases. What do you think?
A: Algorithms do not automatically eliminate bias. Suppose a university, with admission and rejection records dating back for decades and faced with growing numbers of applicants, decides to use a machine learning algorithm that, using the historical records, identifies candidates who are more likely to be admitted. Historical biases in the training data will be learned by the algorithm, and past discrimination will lead to future discrimination.
Q: Are there examples of that happening?
A: A famous example of a system that has wrestled with bias is the resident matching program that matches graduating medical students with residency programs at hospitals. The matching could be slanted to maximize the happiness of the residency programs, or to maximize the happiness of the medical students. Prior to 1997, the match was mostly about the happiness of the programs.
This changed in 1997 in response to “a crisis of confidence concerning whether the matching algorithm was unreasonably favorable to employers at the expense of applicants, and whether applicants could ‘game the system,’ ” according to a paper by Alvin Roth and Elliott Peranson published in The American Economic Review.
Q: You have studied both privacy and algorithm design, and co-wrote a paper, “Fairness Through Awareness,” that came to some surprising conclusions about discriminatory algorithms and people’s privacy. Could you summarize those?
A: “Fairness Through Awareness” makes the observation that sometimes, in order to be fair, it is important to make use of sensitive information while carrying out the classification task. This may be a little counterintuitive: The instinct might be to hide information that could be the basis of discrimination….
Q: The law protects certain groups from discrimination. Is it possible to teach an algorithm to do the same?
A: This is a relatively new problem area in computer science, and there are grounds for optimism — for example, resources from the Fairness, Accountability and Transparency in Machine Learning workshop, which considers the role that machines play in consequential decisions in areas like employment, health care and policing. This is an exciting and valuable area for research. …(More)”