The sharing economy comes to scientific research


 at the Conversation: “…to perform top-quality and cost-effective research, scientists need these technologies and the technical knowledge of experts to run them. When money is tight, where can scientists turn for the tools they need to complete their projects?

Sharing resources

An early solution to this problem was to create what the academic world calls “resource labs” that specialize in one or more specific type of science experiments (e.g., genomics, cell culture, proteomics). Researchers can then order and pay for that type of experiment from the resource lab instead of doing it on their own.

By focusing on one area of science, resource labs become the experts in that area and do the experiments better, faster and cheaper than most scientists could do in their own labs. Scientists no longer stumble through failed experiments trying to learn a new technique when a resource lab can do it correctly from the start.

The pooled funds from many research projects allow resource labs to buy better and faster equipment than any individual scientist could afford. This provides more researchers access to better technology at lower costs – which also saves taxpayers money, since many grants are government-backed….

Connecting people on a scientific Craigslist

This is a common paradox, with several efforts under way to address it. For example, MIT has created several “remote online laboratories” running experiments that can be controlled via the internet, to help enrich teaching in places that can’t afford advanced equipment. Harvard’s eagle-i system is a directory where researchers can list information, data and equipment they are willing to share with others – including cell lines, research mice, and equipment. Different services work for different institutions.

In 2011, Dr. Elizabeth Iorns, a breast cancer researcher, developed a mouse model to study how breast cancer spreads, but her institution didn’t have the equipment to finish one part of her study. My resource lab could complete the project, but despite significant searching, Dr. Iorns did not have an effective way to find labs like mine.

Actively connecting scientists with resource labs, and helping resource labs keep their equipment optimally busy, is a model Iorns and cofounder Dan Knox have developed into a business, called Science Exchange. (I am on its Lab Advisory Board, but have no financial interest in the company.) A little bit Craigslist and Travelocity for science rolled into one, Science Exchange provides scientists and expert resource labs a way to find each other to keep research progressing.

Unlike Starbucks, resource labs are not found on every corner and can be difficult for scientists to find. Now a simple search provides scientists a list of multiple resource labs that could do the experiments, including estimated costs and speed – and even previous users’ reviews of the choices.

I signed onto Science Exchange soon after it went live and Iorns immediately sent her project to my lab. We completed the project quickly, resulting in the first peer-reviewed publication made possible through Science Exchange….(More).

First, design for data sharing


John Wilbanks & Stephen H Friend in Nature Biotechnology: “To upend current barriers to sharing clinical data and insights, we need a framework that not only accounts for choices made by trial participants but also qualifies researchers wishing to access and analyze the data.

This March, Sage Bionetworks (Seattle) began sharing curated data collected from >9,000 participants of mPower, a smartphone-enabled health research study for Parkinson’s disease. The mPower study is notable as one of the first observational assessments of human health to rapidly achieve scale as a result of its design and execution purely through a smartphone interface. To support this unique study design, we developed a novel electronic informed consent process that includes participant-determined data-sharing preferences. It is through these preferences that the new data—including self-reported outcomes and quantitative sensor data—are shared broadly for secondary analysis. Our hope is that by sharing these data immediately, prior even to our own complete analysis, we will shorten the time to harnessing any utility that this study’s data may hold to improve the condition of patients who suffer from this disease.

Turbulent times for data sharing

Our release of mPower comes at a turbulent time in data sharing. The power of data for secondary research is top of mind for many these days. Vice President Joe Biden, in heading President Barack Obama’s ambitious cancer ‘moonshot’, describes data sharing as second only to funding to the success of the effort. However, this powerful support for data sharing stands in opposition to the opinions of many within the research establishment. To wit, the august New England Journal of Medicine (NEJM)’s recent editorial suggesting that those who wish to reuse clinical trial data without the direct participation and approval of the original study team are “research parasites”4. In the wake of colliding perspectives on data sharing, we must not lose sight of the scientific and societal ends served by such efforts.

It is important to acknowledge that meaningful data sharing is a nontrivial process that can require substantial investment to ensure that data are shared with sufficient context to guide data users. When data analysis is narrowly targeted to answer a specific and straightforward question—as with many clinical trials—this added effort might not result in improved insights. However, many areas of science, such as genomics, astronomy and high-energy physics, have moved to data collection methods in which large amounts of raw data are potentially of relevance to a wide variety of research questions, but the methodology of moving from raw data to interpretation is itself a subject of active research….(More)”

Website Seeks to Make Government Data Easier to Sift Through


Steve Lohr at the New York Times: “For years, the federal government, states and some cities have enthusiastically made vast troves of data open to the public. Acres of paper records on demographics, public health, traffic patterns, energy consumption, family incomes and many other topics have been digitized and posted on the web.

This abundance of data can be a gold mine for discovery and insights, but finding the nuggets can be arduous, requiring special skills.

A project coming out of the M.I.T. Media Lab on Monday seeks to ease that challenge and to make the value of government data available to a wider audience. The project, called Data USA, bills itself as “the most comprehensive visualization of U.S. public data.” It is free, and its software code is open source, meaning that developers can build custom applications by adding other data.

Cesar A. Hidalgo, an assistant professor of media arts and sciences at the M.I.T. Media Lab who led the development of Data USA, said the website was devised to “transform data into stories.” Those stories are typically presented as graphics, charts and written summaries….Type “New York” into the Data USA search box, and a drop-down menu presents choices — the city, the metropolitan area, the state and other options. Select the city, and the page displays an aerial shot of Manhattan with three basic statistics: population (8.49 million), median household income ($52,996) and median age (35.8).

Lower on the page are six icons for related subject categories, including economy, demographics and education. If you click on demographics, one of the so-called data stories appears, based largely on data from the American Community Survey of the United States Census Bureau.

Using colorful graphics and short sentences, it shows the median age of foreign-born residents of New York (44.7) and of residents born in the United States (28.6); the most common countries of origin for immigrants (the Dominican Republic, China and Mexico); and the percentage of residents who are American citizens (82.8 percent, compared with a national average of 93 percent).

Data USA features a selection of data results on its home page. They include the gender wage gap in Connecticut; the racial breakdown of poverty in Flint, Mich.; the wages of physicians and surgeons across the United States; and the institutions that award the most computer science degrees….(More)

Selected Readings on Data and Humanitarian Response


By Prianka Srinivasan and Stefaan G. Verhulst *

The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of data and humanitarian response was originally published in 2016.

Data, when used well in a trusted manner, allows humanitarian organizations to innovate how to respond to emergency events, including better coordination of post-disaster relief efforts, the ability to harness local knowledge to create more targeted relief strategies, and tools to predict and monitor disasters in real time. Consequently, in recent years both multinational groups and community-based advocates have begun to integrate data collection and evaluation strategies into their humanitarian operations, to better and more quickly respond to emergencies. However, this movement poses a number of challenges. Compared to the private sector, humanitarian organizations are often less equipped to successfully analyze and manage big data, which pose a number of risks related to the security of victims’ data. Furthermore, complex power dynamics which exist within humanitarian spaces may be further exacerbated through the introduction of new technologies and big data collection mechanisms. In the below we share:

  • Selected Reading List (summaries and hyperlinks)
  • Annotated Selected Reading List
  • Additional Readings

Selected Reading List  (summaries in alphabetical order)

Data and Humanitarian Response

Risks of Using Big Data in Humanitarian Context

Annotated Selected Reading List (in alphabetical order)

Karlsrud, John. “Peacekeeping 4.0: Harnessing the Potential of Big Data, Social Media, and Cyber Technologies.” Cyberspace and International Relations, 2013. http://bit.ly/235Qb3e

  • This chapter from the book “Cyberspace and International Relations” suggests that advances in big data give humanitarian organizations unprecedented opportunities to prevent and mitigate natural disasters and humanitarian crises. However, the sheer amount of unstructured data necessitates effective “data mining” strategies for multinational organizations to make the most use of this data.
  • By profiling some civil-society organizations who use big data in their peacekeeping efforts, Karlsrud suggests that these community-focused initiatives are leading the movement toward analyzing and using big data in countries vulnerable to crisis.
  • The chapter concludes by offering ten recommendations to UN peacekeeping forces to best realize the potential of big data and new technology in supporting their operations.

Mancini, Fancesco. “New Technology and the prevention of Violence and Conflict.” International Peace Institute, 2013. http://bit.ly/1ltLfNV

  • This report from the International Peace Institute looks at five case studies to assess how information and communications technologies (ICTs) can help prevent humanitarian conflicts and violence. Their findings suggest that context has a significant impact on the ability for these ICTs for conflict prevention, and any strategies must take into account the specific contingencies of the region to be successful.
  • The report suggests seven lessons gleaned from the five case studies:
    • New technologies are just one in a variety of tools to combat violence. Consequently, organizations must investigate a variety of complementary strategies to prevent conflicts, and not simply rely on ICTs.
    • Not every community or social group will have the same relationship to technology, and their ability to adopt new technologies are similarly influenced by their context. Therefore, a detailed needs assessment must take place before any new technologies are implemented.
    • New technologies may be co-opted by violent groups seeking to maintain conflict in the region. Consequently, humanitarian groups must be sensitive to existing political actors and be aware of possible negative consequences these new technologies may spark.
    • Local input is integral to support conflict prevention measures, and there exists need for collaboration and awareness-raising with communities to ensure new technologies are sustainable and effective.
    • Information shared between civil-society has more potential to develop early-warning systems. This horizontal distribution of information can also allow communities to maintain the accountability of local leaders.

Meier, Patrick. “Digital humanitarians: how big data is changing the face of humanitarian response.” Crc Press, 2015. http://amzn.to/1RQ4ozc

  • This book traces the emergence of “Digital Humanitarians”—people who harness new digital tools and technologies to support humanitarian action. Meier suggests that this has created a “nervous system” to connect people from disparate parts of the world, revolutionizing the way we respond to humanitarian crises.
  • Meier argues that such technology is reconfiguring the structure of the humanitarian space, where victims are not simply passive recipients of aid but can contribute with other global citizens. This in turn makes us more humane and engaged people.

Robertson, Andrew and Olson, Steve. “Using Data Sharing to Improve Coordination in Peacebuilding.” United States Institute for Peace, 2012. http://bit.ly/235QuLm

  • This report functions as an overview of a roundtable workshop on Technology, Science and Peace Building held at the United States Institute of Peace. The workshop aimed to investigate how data-sharing techniques can be developed for use in peace building or conflict management.
  • Four main themes emerged from discussions during the workshop:
    • “Data sharing requires working across a technology-culture divide”—Data sharing needs the foundation of a strong relationship, which can depend on sociocultural, rather than technological, factors.
    • “Information sharing requires building and maintaining trust”—These relationships are often built on trust, which can include both technological and social perspectives.
    • “Information sharing requires linking civilian-military policy discussions to technology”—Even when sophisticated data-sharing technologies exist, continuous engagement between different stakeholders is necessary. Therefore, procedures used to maintain civil-military engagement should be broadened to include technology.
    • “Collaboration software needs to be aligned with user needs”—technology providers need to keep in mind the needs of its users, in this case peacebuilders, in order to ensure sustainability.

United Nations Independent Expert Advisory Group on a Data Revolution for Sustainable Development. “A World That Counts, Mobilizing the Data Revolution.” 2014. https://bit.ly/2Cb3lXq

  • This report focuses on the potential benefits and risks data holds for sustainable development. Included in this is a strategic framework for using and managing data for humanitarian purposes. It describes a need for a multinational consensus to be developed to ensure data is shared effectively and efficiently.
  • It suggests that “people who are counted”—i.e., those who are included in data collection processes—have better development outcomes and a better chance for humanitarian response in emergency or conflict situations.

Katie Whipkey and Andrej Verity. “Guidance for Incorporating Big Data into Humanitarian Operations.” Digital Humanitarian Network, 2015. http://bit.ly/1Y2BMkQ

  • This report produced by the Digital Humanitarian Network provides an overview of big data, and how humanitarian organizations can integrate this technology into their humanitarian response. It primarily functions as a guide for organizations, and provides concise, brief outlines of what big data is, and how it can benefit humanitarian groups.
  • The report puts forward four main benefits acquired through the use of big data by humanitarian organizations: 1) the ability to leverage real-time information; 2) the ability to make more informed decisions; 3) the ability to learn new insights; 4) the ability for organizations to be more prepared.
  • It goes on to assess seven challenges big data poses for humanitarian organizations: 1) geography, and the unequal access to technology across regions; 2) the potential for user error when processing data; 3) limited technology; 4) questionable validity of data; 5) underdeveloped policies and ethics relating to data management; 6) limitations relating to staff knowledge.

Risks of Using Big Data in Humanitarian Context
Crawford, Kate, and Megan Finn. “The limits of crisis data: analytical and ethical challenges of using social and mobile data to understand disasters.” GeoJournal 80.4, 2015. http://bit.ly/1X0F7AI

  • Crawford & Finn present a critical analysis of the use of big data in disaster management, taking a more skeptical tone to the data revolution facing humanitarian response.
  • They argue that though social and mobile data analysis can yield important insights and tools in crisis events, it also presents a number of limitations which can lead to oversights being made by researchers or humanitarian response teams.
  • Crawford & Finn explore the ethical concerns the use of big data in disaster events introduces, including issues of power, privacy, and consent.
  • The paper concludes by recommending that critical data studies, such as those presented in the paper, be integrated into crisis event research in order to analyze some of the assumptions which underlie mobile and social data.

Jacobsen, Katja Lindskov (2010) Making design safe for citizens: A hidden history of humanitarian experimentation. Citizenship Studies 14.1: 89-103. http://bit.ly/1YaRTwG

  • This paper explores the phenomenon of “humanitarian experimentation,” where victims of disaster or conflict are the subjects of experiments to test the application of technologies before they are administered in greater civilian populations.
  • By analyzing the particular use of iris recognition technology during the repatriation of Afghan refugees to Pakistan in 2002 to 2007, Jacobsen suggests that this “humanitarian experimentation” compromises the security of already vulnerable refugees in order to better deliver biometric product to the rest of the world.

Responsible Data Forum. “Responsible Data Reflection Stories: An Overview.” http://bit.ly/1Rszrz1

  • This piece from the Responsible Data forum is primarily a compilation of “war stories” which follow some of the challenges in using big data for social good. By drawing on these crowdsourced cases, the Forum also presents an overview which makes key recommendations to overcome some of the challenges associated with big data in humanitarian organizations.
  • It finds that most of these challenges occur when organizations are ill-equipped to manage data and new technologies, or are unaware about how different groups interact in digital spaces in different ways.

Sandvik, Kristin Bergtora. “The humanitarian cyberspace: shrinking space or an expanding frontier?” Third World Quarterly 37:1, 17-32, 2016. http://bit.ly/1PIiACK

  • This paper analyzes the shift toward more technology-driven humanitarian work, where humanitarian work increasingly takes place online in cyberspace, reshaping the definition and application of aid. This has occurred along with what many suggest is a shrinking of the humanitarian space.
  • Sandvik provides three interpretations of this phenomena:
    • First, traditional threats remain in the humanitarian space, which are both modified and reinforced by technology.
    • Second, new threats are introduced by the increasing use of technology in humanitarianism, and consequently the humanitarian space may be broadening, not shrinking.
    • Finally, if the shrinking humanitarian space theory holds, cyberspace offers one example of this, where the increasing use of digital technology to manage disasters leads to a contraction of space through the proliferation of remote services.

Additional Readings on Data and Humanitarian Response

* Thanks to: Kristen B. Sandvik; Zara Rahman; Jennifer Schulte; Sean McDonald; Paul Currion; Dinorah Cantú-Pedraza and the Responsible Data Listserve for valuable input.

Elements of a New Ethical Framework for Big Data Research


The Berkman Center is pleased to announce the publication of a new paper from the Privacy Tools for Sharing Research Data project team. In this paper, Effy Vayena, Urs Gasser, Alexandra Wood, and David O’Brien from the Berkman Center, with Micah Altman from MIT Libraries, outline elements of a new ethical framework for big data research.

Emerging large-scale data sources hold tremendous potential for new scientific research into human biology, behaviors, and relationships. At the same time, big data research presents privacy and ethical challenges that the current regulatory framework is ill-suited to address. In light of the immense value of large-scale research data, the central question moving forward is not whether such data should be made available for research, but rather how the benefits can be captured in a way that respects fundamental principles of ethics and privacy.

The authors argue that a framework with the following elements would support big data utilization and help harness the value of big data in a sustainable and trust-building manner:

  • Oversight should aim to provide universal coverage of human subjects research, regardless of funding source, across all stages of the information lifecycle.

  • New definitions and standards should be developed based on a modern understanding of privacy science and the expectations of research subjects.

  • Researchers and review boards should be encouraged to incorporate systematic risk-benefit assessments and new procedural and technological solutions from the wide range of interventions that are available.

  • Oversight mechanisms and the safeguards implemented should be tailored to the intended uses, benefits, threats, harms, and vulnerabilities associated with a specific research activity.

Development of a new ethical framework with these elements should be the product of a dynamic multistakeholder process that is designed to capture the latest scientific understanding of privacy, analytical methods, available safeguards, community and social norms, and best practices for research ethics as they evolve over time.

The full paper is available for download through the Washington and Lee Law Review Online as part of a collection of papers featured at the Future of Privacy Forum workshop Beyond IRBs: Designing Ethical Review Processes for Big Data Research held on December 10, 2015, in Washington, DC….(More)”

When open data is a Trojan Horse: The weaponization of transparency in science and governance


Karen E.C. Levy and David Merritt Johns in Big Data and Society: “Openness and transparency are becoming hallmarks of responsible data practice in science and governance. Concerns about data falsification, erroneous analysis, and misleading presentation of research results have recently strengthened the call for new procedures that ensure public accountability for data-driven decisions. Though we generally count ourselves in favor of increased transparency in data practice, this Commentary highlights a caveat. We suggest that legislative efforts that invoke the language of data transparency can sometimes function as “Trojan Horses” through which other political goals are pursued. Framing these maneuvers in the language of transparency can be strategic, because approaches that emphasize open access to data carry tremendous appeal, particularly in current political and technological contexts. We illustrate our argument through two examples of pro-transparency policy efforts, one historical and one current: industry-backed “sound science” initiatives in the 1990s, and contemporary legislative efforts to open environmental data to public inspection. Rules that exist mainly to impede science-based policy processes weaponize the concept of data transparency. The discussion illustrates that, much as Big Data itself requires critical assessment, the processes and principles that attend it—like transparency—also carry political valence, and, as such, warrant careful analysis….(More)”

The creative citizen unbound


The creative citizen unbound

Book by Ian Hargreaves and John Hartley on “How social media and DIY culture contribute to democracy, communities and the creative economy”: “The creative citizen unbound introduces the concept of ‘creative citizenship’ to explore the potential of civic-minded creative individuals in the era of social media and in the context of an expanding creative economy. Drawing on the findings of a 30-month study of communities supported by the UK research funding councils, multidisciplinary contributors examine the value and nature of creative citizenship, not only in terms of its contribution to civic life and social capital but also to more contested notions of value, both economic and cultural. This original book will be beneficial to researchers and students across a range of disciplines including media and communication, political science, economics, planning and economic geography, and the creative and performing arts….(More)”

How to Win a Science Contest


 at Pacific Standard: “…there are contests like the DARPA Robotics Challenge, which gives prizes for solving particularly difficult problems, like how to prevent an autonomous vehicle from crashing.

But who wins such contests, and how? One might think it’s the science insiders, since they have the knowledge and background to solve difficult scientific problems. It’s hard to imagine, for example, a political scientist solving a major problem in theoretical physics. At the same time, insiders can become inflexible, having been so ensconced in a particular way of thinking that they can’t see outside of the box, let alone think outside it.

Unfortunately, most of what we know about insiders, outsiders, and scientific success is anecdotal. (Hedy Lamarr, the late actress and co-inventor of a key wireless technology, is a prominent anecdote, but still just an anecdote.) To remedy that, Oguz Ali Acar and Jan van den Ende decided to conduct a proper study. For data, they looked to InnoCentive, an online platform that “crowdsource[s] innovative solutions from the world’s smartest people, who compete to provide ideas and solutions to important business, social, policy, scientific, and technical challenges,” according to its website.

Acar and van den Ende surveyed 230 InnoCentive contest participants, who reported how much expertise they had related to the last problem they’d solved, along with how much experience they had solving similar problems in the past, regardless of whether it was related to their professional expertise. The researchers also asked how many different scientific fields problem solvers had looked to for ideas, and how much effort they’d put into their solutions. For each of the solvers, the researchers then looked at all the contests that person won and computed their odds of winning—a measure of creativity, they argue, since contests are judged in part on the solutions’ creativity.

That data revealed an intuitive, though not entirely simple pattern. Insiders (think Richard Feynman in physics) were more likely to win a contest when they cast a wide net for ideas, while outsiders (like Lamarr) performed best when they focused on one scientific or technological domain. In other words, outsiders—who may bring a useful new perspective to bear—should bone up on the problem they’re trying to solve, while insiders, who’ve already done their homework, benefit from thinking outside the box.

Still, there’s something both groups can’t do without: hard work. “[I]f insiders … spend significant amounts of time seeking out knowledge from a wide variety of other fields, they are more likely to be creative in that domain,” Acar and van den Ende write, and if outsiders work hard, they “can turn their lack of knowledge in a domain into an advantage.”….(More)”

How to stop being so easily manipulated by misleading statistics


Q&A by Akshat Rathi in Quartz: “There are three kinds of lies: Lies, damned lies, and statistics.” Few people know the struggle of correcting such lies better than David Spiegelhalter. Since 2007, he has been the Winton professor for the public understanding of risk (though he prefers “statistics” to “risk”) at the University of Cambridge.In a sunlit hotel room in Washington DC, Quartz caught up with Spiegelhalter recently to talk about his unique job. The conversation sprawled from the wisdom of eating bacon (would you swallow any other known carcinogen?), to the serious crime of manipulating charts, to the right way to talk about rare but scary diseases.

In a sunlit hotel room in Washington DC, Quartz caught up with Spiegelhalter recently to talk about his unique job. The conversation sprawled from the wisdom of eating bacon (would you swallow any other known carcinogen?), to the serious crime of manipulating charts, to the right way to talk about rare but scary diseases.

 When he isn’t fixing people’s misunderstandings of numbers, he works to communicate numbers better so that misunderstandings can be avoided from the beginning. The interview is edited and condensed for clarity….
What’s a recent example of misrepresentation of statistics that drove you bonkers?
I got very grumpy at an official graph of British teenage pregnancy rates that apparently showed they had declined to nearly zero. Until I realized that the bottom part of the axis had been cut off, which made it impossible to visualize the (very impressive) 50% reduction since 2000.You once said graphical representation of data does not always communicate what we think it communicates. What do you mean by that?
Graphs can be as manipulative as words. Using tricks such as cutting axes, rescaling things, changing data from positive to negative, etc. Sometimes putting zero on the y-axis is wrong. So to be sure that you are communicating the right things, you need to evaluate the message that people are taking away. There are no absolute rules. It all depends on what you want to communicate….

Poorly communicated risk can have a severe effect. For instance, the news story about the risk that pregnant women are exposing their unborn child to when they drink alcohol caused stress to one of our news editors who had consumed wine moderately through her pregnancy.

 I think it’s irresponsible to say there is a risk when they actually don’t know if there is one. There is scientific uncertainty about that.
  “‘Absence of evidence is not evidence of absence.’ I hate that phrase…It’s always used in a manipulative way.” In such situations of unknown risk, there is a phrase that is often used: “Absence of evidence is not evidence of absence.” I hate that phrase. I get so angry when people use that phrase. It’s always used in a manipulative way. I say to them that it’s not evidence of absence, but if you’ve looked hard enough you’ll see that most of the time the evidence shows a very small effect, if at all.

So on the risks of drinking alcohol while being pregnant, the UK’s health authority said that as a precautionary step it’s better not to drink. That’s fair enough. This honesty is important. To say that we don’t definitely know if drinking is harmful, but to be safe we say you shouldn’t. That’s treating people as adults and allowing them to use their own judgement.

Science is a bigger and bigger part of our lives. What is the limitation in science journalism right now and how can we improve it?...(More)

The Function of—and Need for—Institutional Review Boards


Review by  of The Censor’s Hand: The Misregulation of Human-Subject Research (Carl E. Schneider, The MIT Press): “Scientific research can be a laborious and frustrating process even before it gets started—especially when it involves living human subjects. Universities and other research institutions maintain Institutional Review Boards that scrutinize research proposals and their methodologies, consent and privacy procedures, and so on. Similarly intensive reviews are required when the intention is to use human tissue—if, say, tissue from diagnostic cancer biopsies could potentially be used to gauge the prevalence of some other illness across the population. These procedures can generate absurdities. A doctor who wanted to know which television characters children recognized, for example, was advised to seek ethics committee approval, and told that he needed to do a pilot study as a precursor.

Today’s IRB system is the response to a historic problem: academic researchers’ tendency to behave abominably when left unmonitored. Nazi medical and pseudomedical experiments provide an obvious and well-known reference, but such horrors are not found only in totalitarian regimes. The Tuskegee syphilis study, for example, deliberately left black men untreated over the course of decades so researchers could study the natural course of the disease. On a much smaller but equally disturbing scale is the case of Dan Markingson, a 26-year-old University of Michigan graduate. Suffering from psychotic illness, Markingson was coercively enrolled in a study of antipsychotics to which he could not consent, and concerns about his deteriorating condition were ignored. In 2004, he was found dead, having almost decapitated himself with a box cutter.

Many thoughtful ethicists are aware of the imperfections of IRBs. They have worried publicly for some time that the IRB system, or parts of it, may claim an authority with which even many bioethicists are uncomfortable, and hinder science for no particularly good reason. Does the system need re-tuning, a total re-build, or something even more drastic?

When it comes to IRBs, Carl E. Schneider, a professor of law and internal medicine at the University of Michigan, belongs to the abolitionist camp. In The Censor’s Hand: The Misregulation of Human-Subject Research, he presents the case against the IRB system plainly. It is a case that rests on seven related charges.

IRBs, Schneider posits, cannot be shown to do good, with regulators able to produce “no direct evidence that IRBs prevented harm”; that an IRB at least went through the motions of reviewing the trial in which Markingson died might be cited as evidence of this. On top of that, he claims, IRBs sometimes cause harm, at least insofar as they slow down medical innovation. They are built to err on the side of caution, since “research on humans” can cover a vast range of activities and disciplines, and they struggle to take this range into proper account. Correspondingly, they “lack a legible and convincing ethics”; the autonomy of IRBs means that they come to different decisions on identical cases. (In one case, an IRB thought that providing supplemental vitamin A in a study was so dangerous that it should not be allowed; another thought that withholding it in the same study was so dangerous that it should not be allowed.) IRBs have unrealistically high expectations of their members, who are often fairly ad hoc groupings with no obvious relevant expertise. They overemphasize informed consent, with the unintended consequence that cramming every possible eventuality into a consent form makes it utterly incomprehensible. Finally, Schneider argues, IRBs corrode free expression by restricting what researchers can do and how they can do it….(More)”