Countries Can Learn from France’s Plan for Public Interest Data and AI


Nick Wallace at the Center for Data Innovation: “French President Emmanuel Macron recently endorsed a national AI strategy that includes plans for the French state to make public and private sector datasets available for reuse by others in applications of artificial intelligence (AI) that serve the public interest, such as for healthcare or environmental protection. Although this strategy fails to set out how the French government should promote widespread use of AI throughout the economy, it will nevertheless give a boost to AI in some areas, particularly public services. Furthermore, the plan for promoting the wider reuse of datasets, particularly in areas where the government already calls most of the shots, is a practical idea that other countries should consider as they develop their own comprehensive AI strategies.

The French strategy, drafted by mathematician and Member of Parliament Cédric Villani, calls for legislation to mandate repurposing both public and private sector data, including personal data, to enable public-interest uses of AI by government or others, depending on the sensitivity of the data. For example, public health services could use data generated by Internet of Things (IoT) devices to help doctors better treat and diagnose patients. Researchers could use data captured by motorway CCTV to train driverless cars. Energy distributors could manage peaks and troughs in demand using data from smart meters.

Repurposed data held by private companies could be made publicly available, shared with other companies, or processed securely by the public sector, depending on the extent to which sharing the data presents privacy risks or undermines competition. The report suggests that the government would not require companies to share data publicly when doing so would impact legitimate business interests, nor would it require that any personal data be made public. Instead, Dr. Villani argues that, if wider data sharing would do unreasonable damage to a company’s commercial interests, it may be appropriate to only give public authorities access to the data. But where the stakes are lower, companies could be required to share the data more widely, to maximize reuse. Villani rightly argues that it is virtually impossible to come up with generalizable rules for how data should be shared that would work across all sectors. Instead, he argues for a sector-specific approach to determining how and when data should be shared.

After making the case for state-mandated repurposing of data, the report goes on to highlight four key sectors as priorities: health, transport, the environment, and defense. Since these all have clear implications for the public interest, France can create national laws authorizing extensive repurposing of personal data without violating the General Data Protection Regulation (GDPR) which allows national laws that permit the repurposing of personal data where it serves the public interest. The French strategy is the first clear effort by an EU member state to proactively use this clause in aid of national efforts to bolster AI….(More)”.

Most Public Engagement is Worthless


Charles Marohn at Strong Towns: “…Our thinking is a byproduct of the questions we ask. …I’m a planner and I’m a policy nerd. I had all the training in how to hold a public meeting and solicit feedback through SWOT (strengths, weaknesses, opportunities, threats) questions. I’ve been taught how to reach out to marginalized groups and make sure they too have a voice in the process. That is, so long as that voice fit into the paradigm of a planner and a policy nerd. Or so long as I could make it fit.

Modern Planner: What percentage of the city budget should we spend on parks?

Steve Jobs: Do you use the park?

Our planning efforts should absolutely be guided by the experiences of real people. But their actions are the data we should be collecting, not their stated preferences. To do the latter is to get comfortable trying to build a better Walkman.  We should be designing the city equivalent of the iPod: something that responds to how real people actually live. It’s a messier and less affirming undertaking.

I’ve come to the point in my life where I think municipal comprehensive planning is worthless. More often than not, it is a mechanism to wrap a veneer of legitimacy around the large policy objectives of influential people. Most cities would be better off putting together a good vision statement and a set of guiding principles for making decisions, then getting on with it.

That is, get on with the hard work of iteratively building a successful city. That work is a simple, four-step process:

  1. Humbly observe where people in the community struggle.
  2. Ask the question: What is the next smallest thing we can do right now to address that struggle?
  3. Do that thing. Do it right now.
  4. Repeat.

It’s challenging to be humble, especially when you are in a position, or are part of a profession, whose internal narrative tells you that you already knowwhat to do. It’s painful to observe, especially when that means confronting messy realities that do not fit with your view of the world. It’s unsatisfying, at times, to try many small things when the “obvious” fix is right there. If only those around you just shared your “courage” to undertake it (of course, with no downside to you if you’re wrong). If only people had the patience to see it through (while they, not you, continue to struggle in the interim).

Yet what if we humbly observe where people in our community struggle—if we use the experiences of others as our data—and we continually take the actions we are capable of taking, right now, to alleviate those struggles? And what if we do this in neighborhood after neighborhood across the entire city, month after month and year after year? If we do that, not only will we make the lowest risk, highest returning public investments it is possible to make, we won’t help but improve people’s lives in the process….(More)”.

Programmers need ethics when designing the technologies that influence people’s lives


Cherri M. Pancake at The Conversation: “Computing professionals are on the front lines of almost every aspect of the modern world. They’re involved in the response when hackers steal the personal information of hundreds of thousands of people from a large corporation. Their work can protect – or jeopardize – critical infrastructure like electrical grids and transportation lines. And the algorithms they write may determine who gets a job, who is approved for a bank loan or who gets released on bail.

Technological professionals are the first, and last, lines of defense against the misuse of technology. Nobody else understands the systems as well, and nobody else is in a position to protect specific data elements or ensure the connections between one component and another are appropriate, safe and reliable. As the role of computing continues its decades-long expansion in society, computer scientists are central to what happens next.

That’s why the world’s largest organization of computer scientists and engineers, the Association for Computing Machinery, of which I am president, has issued a new code of ethics for computing professionals. And it’s why ACM is taking other steps to help technologists engage with ethical questions….

ACM’s new ethics code has several important differences from the 1992 version. One has to do with unintended consequences. In the 1970s and 1980s, technologists built software or systems whose effects were limited to specific locations or circumstances. But over the past two decades, it has become clear that as technologies evolve, they can be applied in contexts very different from the original intent.

For example, computer vision research has led to ways of creating 3D models of objects – and people – based on 2D images, but it was never intended to be used in conjunction with machine learning in surveillance or drone applications. The old ethics code asked software developers to be sure a program would actually do what they said it would. The new version also exhorts developers to explicitly evaluate their work to identify potentially harmful side effects or potential for misuse.

Another example has to do with human interaction. In 1992, most software was being developed by trained programmers to run operating systems, databases and other basic computing functions. Today, many applications rely on user interfaces to interact directly with a potentially vast number of people. The updated code of ethics includes more detailed considerations about the needs and sensitivities of very diverse potential users – including discussing discrimination, exclusion and harassment….(More)”.

How Taiwan’s online democracy may show future of humans and machines


Shuyang Lin at the Sydney Morning Herald: “Taiwanese citizens have spent the past 30 years prototyping future democracy since the lift of martial law in 1987. Public participation in Taiwan has been developed in several formats, from face-to-face to deliberation over the internet. This trajectory coincides with the advancement of technology, and as new tools arrived, democracy evolved.

The launch of vTaiwan (v for virtual, vote, voice and verb), an experiment that prototypes an open consultation process for the civil society, showed that by using technology creatively humanity can facilitate deep and fair conversations, form collective consensus, and deliver solutions we can all live with.

It is a prototype that helps us envision what future democracy could look like….

Decision-making is not an easy task, especially when it has to do with a larger group of people. Group decision-making could take several protocols, such as mandate, to decide and take questions; advise, to listen before decisions; consent, to decide if no one objects; and consensus, to decide if everyone agrees. So there is a pressing need for us to be able to collaborate together in a large scale decision-making process to update outdated standards and regulations.

The future of human knowledge is on the web. Technology can help us to learn, communicate, and make better decisions faster with larger scale. The internet could be the facilitation and AI could be the catalyst. It is extremely important to be aware that decision-making is not a one-off interaction. The most important direction of decision-making technology development is to have it allow humans to be engaged in the process anytime and also have an invitation to request and submit changes.

Humans have started working with computers, and we will continue to work with them. They will help us in the decision-making process and some will even make decisions for us; the actors in collaboration don’t necessarily need to be just humans. While it is up to us to decide what and when to opt in or opt out, we should work together with computers in a transparent, collaborative and inclusive space.

Where shall we go as a society? What do we want from technology? As Audrey Tang,  Digital Minister without Portfolio of Taiwan, puts it: “Deliberation — listening to each other deeply, thinking together and working out something that we can all live with — is magical.”…(More)”.

Introducing the (World’s First) Ethical Operating System


Article by Paula Goldman and Raina Kumra: “Is it possible for tech developers to anticipate future risks? Or are these future risks so unknowable to us here in the present that, try as we might to make our tech safe, continued exposure to risks is simply the cost of engagement?

 Today, in collaboration with Institute for the Future (IFTF), a leading non-profit strategic futures organization, Omidyar Network is excited to introduce the Ethical Operating System (or Ethical OS for short), a toolkit for helping developers and designers anticipate the future impact of technologies they’re working on today. We designed the Ethical OS to facilitate better product development, faster deployment, and more impactful innovation — all while striving to minimize technical and reputational risks. The hope is that, with the Ethical OS in hand, technologists can begin to build responsibility into core business and product decisions, and contribute to a thriving tech industry.

The Ethical OS is already being piloted by nearly 20 tech companies, schools, and startups, including Mozilla and Techstars. We believe it can better equip technologists to grapple with three of the most pressing issues facing our community today:

    • If the technology you’re building right now will someday be used in unexpected ways, how can you hope to be prepared?

 

    • What new categories of risk should you pay special attention to right now?

 

  • Which design, team, or business model choices can actively safeguard users, communities, society, and your company from future risk?

As large sections of the public grow weary of a seemingly constant stream of data safety and security issues, and with growing calls for heightened government intervention and oversight, the time is now for the tech community to get this right.

We created the Ethical OS as a pilot to help make ethical thinking and future risk mitigation integral components of all design and development processes. It’s not going to be easy. The industry has far more work to do, both inside individual companies and collectively. But with our toolkit as a guide, developers will have a practical means of helping to begin working to ensure their tech is as good as their intentions…(More)”.

Decision-Making, the Direction of Change, and the Governance of Complex, Large-Scale Settlement Systems


Chapter by William Bowen and Robert Gleeson in The Evolution of Human Settlements: “…argue that the evolutionary processes by which human settlements have evolved through countless experiments throughout millennia are the most likely paths for resolving today’s greatest problems. Darwin’s great insight has important implications for understanding decision-making, the direction of change and the governance of complex, large-scale settlement systems. Darwinian views accommodate fallible Homo sapiens making decisions, some of which work and others that do not. Darwinian views imply the value of diverse institutions and reliance upon general patterns of social, ideational, and technical interaction rather than upon specific policies designed to directly produce particular results for particular individuals, groups, and settlement systems. Solutions will evolve only if we ensure continuous, diverse, problem-solving initiatives….(More).

#TrendingLaws: How can Machine Learning and Network Analysis help us identify the “influencers” of Constitutions?


Unicef: “New research by scientists from UNICEF’s Office of Innovation — published today in the journal Nature Human Behaviour — applies methods from network science and machine learning to constitutional law.  UNICEF Innovation Data Scientists Alex Rutherford and Manuel Garcia-Herranz collaborated with computer scientists and political scientists at MIT, George Washington University, and UC Merced to apply data analysis to the world’s constitutions over the last 300 years. This work sheds new light on how to better understand why countries’ laws change and incorporate social rights…

Data science techniques allow us to use methods like network science and machine learning to uncover patterns and insights that are hard for humans to see. Just as we can map influential users on Twitter — and patterns of relations between places to predict how diseases will spread — we can identify which countries have influenced each other in the past and what are the relations between legal provisions.

Why The Science of Constitutions?

One way UNICEF fulfills its mission is through advocacy with national governments — to enshrine rights for minorities, notably children, formally in law. Perhaps the most renowned example of this is the International Convention on the Rights of the Child (ICRC).

Constitutions, such as Mexico’s 1917 constitution — the first to limit the employment of children — are critical to formalizing rights for vulnerable populations. National constitutions describe the role of a country’s institutions, its character in the eyes of the world, as well as the rights of its citizens.

From a scientific standpoint, the work is an important first step in showing that network analysis and machine learning technique can be used to better understand the dynamics of caring for and protecting the rights of children — critical to the work we do in a complex and interconnected world. It shows the significant, and positive policy implications of using data science to uphold children’s rights.

What the Research Shows:

Through this research, we uncovered:

  • A network of relationships between countries and their constitutions.
  • A natural progression of laws — where fundamental rights are a necessary precursor to more specific rights for minorities.
  • The effect of key historical events in changing legal norms….(More)”.

Satellites can advance sustainable development by highlighting poverty


Cordis: “Estimating poverty is crucial for improving policymaking and advancing the sustainability of a society. Traditional poverty estimation methods such as household surveys and census data incur huge costs however, creating a need for more efficient approaches.

With this in mind, the EU-funded USES project examined how satellite images could be used to estimate household-level poverty in rural regions of developing countries. “This promises to be a radically more cost-effective way of monitoring and evaluating the Sustainable Development Goals,” says Dr Gary Watmough, USES collaborator and Interdisciplinary Lecturer in Land Use and Socioecological Systems at the University of Edinburgh, United Kingdom.

Land use and land cover reveal poverty clues

To achieve its aims, the project investigated how land use and land cover information from satellite data could be linked with household survey data. “We looked particularly at how households use the landscape in the local area for agriculture and other purposes such as collecting firewood and using open areas for grazing cattle,” explains Dr Watmough.

The work also involved examining satellite images to determine which types of land use were related to household wealth or poverty using statistical analysis. “By trying to predict household poverty using the land use data we could see which land use variables were most related to the household wealth in the area,” adds Dr Watmough.

Overall, the USES project found that satellite data could predict poverty particularly the poorest households in the area. Dr Watmough comments: “This is quite remarkable given that we are trying to predict complicated household-level poverty from a simple land use map derived from high-resolution satellite data.”

A study conducted by USES in Kenya found that the most important remotely sensed variable was building size within the homestead. Buildings less than 140 m2 were mostly associated with poorer households, whereas those over 140 m2 tended to be wealthier. The amount of bare ground in agricultural fields and within the homestead region was also important. “We also found that poorer households were associated with a shorter number of agricultural growing days,” says Dr Watmough….(More)”.

Technology, Activism, and Social Justice in a Digital Age


Book edited by John G. McNutt: “…offers a close look at both the present nature and future prospects for social change. In particular, the text explores the cutting edge of technology and social change, while discussing developments in social media, civic technology, and leaderless organizations — as well as more traditional approaches to social change.

It effectively assembles a rich variety of perspectives to the issue of technology and social change; the featured authors are academics and practitioners (representing both new voices and experienced researchers) who share a common devotion to a future that is just, fair, and supportive of human potential.

They come from the fields of social work, public administration, journalism, law, philanthropy, urban affairs, planning, and education, and their work builds upon 30-plus years of research. The authors’ efforts to examine changing nature of social change organizations and the issues they face will help readers reflect upon modern advocacy, social change, and the potential to utilize technology in making a difference….(More)”

To Better Predict Traffic, Look to the Electric Grid


Linda Poon at CityLab: “The way we consume power after midnight can reveal how we bad the morning rush hour will be….

Commuters check Google Maps for traffic updates the same way they check the weather app for rain predictions. And for good reasons: By pooling information from millions of drivers already on the road, Google can paint an impressively accurate real-time portrait of congestion. Meanwhile, historical numbers can roughly predict when your morning commutes may be particularly bad.

But “the information we extract from traffic data has been exhausted,” said Zhen (Sean) Qian, who directs the Mobility Data Analytics Center at Carnegie Mellon University. He thinks that to more accurately predict how gridlock varies from day to day, there’s a whole other set of data that cities haven’t mined yet: electricity use.

“Essentially we all use the urban system—the electricity, water, the sewage system and gas—and when people use them and how heavily they do is correlated to the way they use the transportation system,” he said. How we use electricity at night, it turns out, can reveal when we leave for work the next day. “So we might be able to get new information that helps explain travel time one or two hours in advance by having a better understanding of human activity.”

 In a recent study in the journal Transportation Research Part C, Qian and his student Pinchao Zhang used 2014 data to demonstrate how electricity usage patterns can predict when peak congestion begins on various segments of a major highway in Austin, Texas—the 14th most congested city in the U.S. They crunched 79 days worth of electricity usage data for 322 households (stripped of all private information, including location), feeding it into a machine learning algorithm that then categorized the households into 10 groups according to the time and amount of electricity use between midnight and 6 a.m. By extrapolating the most critical traffic-related information about each group for each day, the model then predicted what the commute may look like that morning.
When compared with 2014 traffic data, they found that 8 out of the 10 patterns had an impact on highway traffic. Households that show a spike of electricity use from midnight to 2 a.m., for example, may be night owls who sleep in, leave late, and likely won’t contribute to the early morning congestion. In contrast, households that report low electricity use from midnight to 5 a.m., followed by a rise after 5:30 a.m., could be early risers who will be on the road during rush hour. If the researchers’ model detects more households falling into the former group, it might predict that peak congestion will start closer to, say, 7:45 a.m. rather than the usual 7:30….(More)”.