Navigating the Future of Work: Perspectives on Automation, AI, and Economic Prosperity


Report by Erik Brynjolfsson, Adam Thierer and Daron Acemoglu: “Experts and the media tend to overestimate technology’s negative impact on employment. Case studies suggest that technology-induced unemployment fears are often exaggerated, evidenced by the McKinsey Global Institute reversing its AI forecasts and the growth in jobs predicted to be at high risk of automation.

Flexible work arrangements, technical recertification, and creative apprenticeship models offer real-time learning and adaptable skills development to prepare workers for future labor market and technological changes.

AI can potentially generate new employment opportunities, but the complex transition for workers displaced by automation—marked by the need for retraining and credentialing—indicates that the productivity benefits may not adequately compensate for job losses, particularly among low-skilled workers.

Instead of resorting to conflictual relationships, labor unions in the US must work with employers to support firm automation while simultaneously advocating for worker skill development, creating a competitive business enterprise built on strong worker representation similar to that found in Germany…(More)”.

Handbook of Artificial Intelligence at Work


Book edited by Martha Garcia-Murillo and Andrea Renda: “With the advancement in processing power and storage now enabling algorithms to expand their capabilities beyond their initial narrow applications, technology is becoming increasingly powerful. This highly topical Handbook provides a comprehensive overview of the impact of Artificial Intelligence (AI) on work, assessing its effect on an array of economic sectors, the resulting nature of work, and the subsequent policy implications of these changes.

Featuring contributions from leading experts across diverse fields, the Handbook of Artificial Intelligence at Work takes an interdisciplinary approach to understanding AI’s connections to existing economic, social, and political ecosystems. Considering a range of fields including agriculture, manufacturing, health care, education, law and government, the Handbook provides detailed sector-specific analyses of how AI is changing the nature of work, the challenges it presents and the opportunities it creates. Looking forward, it makes policy recommendations to address concerns, such as the potential displacement of some human labor by AI and growth in inequality affecting those lacking the necessary skills to interact with these technologies or without opportunities to do so.

This vital Handbook is an essential read for students and academics in the fields of business and management, information technology, AI, and public policy. It will also be highly informative from a cross-disciplinary perspective for practitioners, as well as policy makers with an interest in the development of AI technology…(More)”

Creating Real Value: Skills Data in Learning and Employment Records


Article by Nora Heffernan: “Over the last few months, I’ve asked the same question to corporate leaders from human resources, talent acquisition, learning and development, and management backgrounds. The question is this:

What kind of data needs to be included in learning and employment records to be of greatest value to you in your role and to your organization?

By data, I’m talking about credential attainment, employment history, and, emphatically, verified skills data: showing at an individual level what a candidate or employee knows and is able to do.

The answer varies slightly by industry and position, but unanimously, the employers I’ve talked to would find the greatest value in utilizing learning and employment records that include verified skills data. There is no equivocation.

And as the national conversation about skills-first talent management continues to ramp up, with half of companies indicating they plan to eliminate degree requirements for some jobs in the next year, the call for verified skill data will only get louder. Employers value skills data for multiple reasons…(More)”.

Name Your Industry—or Else!


Essay by Sarah M. Brownsberger on “The dehumanizing way economics data describes us”: “…My alma mater wants to know what industry I belong to. In a wash of good feeling after seeing old friends, I have gone to the school website to update my contact information. Name and address, easy, marital status, well and good—but next comes a drop-down menu asking for my “industry.”

In my surprise, I have an impulse to type “Where the bee sucks, there suck I!” But you can’t quote Shakespeare in a drop-down menu. You can only opt only for its options.

The school is certainly cutting-edge. Like a fashion item that you see once and assume is aberrant and then see ten times in a week, the word “industry” is all over town. Cryptocurrency is an industry. So are Elvis-themed marriages. Outdoor recreation is an industry. A brewery in my city hosts “Industry Night,” a happy hour “for those who work in the industry”—tapsters and servers.

Are we all in an industry? What happened to “occupation”?…(More)”.

Rebalancing AI


Article by Daron Acemoglu and Simon Johnson: “Optimistic forecasts regarding the growth implications of AI abound. AI adoption could boost productivity growth by 1.5 percentage points per year over a 10-year period and raise global GDP by 7 percent ($7 trillion in additional output), according to Goldman Sachs. Industry insiders offer even more excited estimates, including a supposed 10 percent chance of an “explosive growth” scenario, with global output rising more than 30 percent a year.

All this techno-optimism draws on the “productivity bandwagon”: a deep-rooted belief that technological change—including automation—drives higher productivity, which raises net wages and generates shared prosperity.

Such optimism is at odds with the historical record and seems particularly inappropriate for the current path of “just let AI happen,” which focuses primarily on automation (replacing people). We must recognize that there is no singular, inevitable path of development for new technology. And, assuming that the goal is to sustainably improve economic outcomes for more people, what policies would put AI development on the right path, with greater focus on enhancing what all workers can do?…(More)”

Using AI to support people with disability in the labour market


OECD Report: “People with disability face persisting difficulties in the labour market. There are concerns that AI, if managed poorly, could further exacerbate these challenges. Yet, AI also has the potential to create more inclusive and accommodating environments and might help remove some of the barriers faced by people with disability in the labour market. Building on interviews with more than 70 stakeholders, this report explores the potential of AI to foster employment for people with disability, accounting for both the transformative possibilities of AI-powered solutions and the risks attached to the increased use of AI for people with disability. It also identifies obstacles hindering the use of AI and discusses what governments could do to avoid the risks and seize the opportunities of using AI to support people with disability in the labour market…(More)”.

Choosing AI’s Impact on the Future of Work 


Article by Daron Acemoglu & Simon Johnson  …“Too many commentators see the path of technology as inevitable. But the historical record is clear: technologies develop according to the vision and choices of those in positions of power. As we document in Power and Progress: Our 1,000-Year Struggle over Technology and Prosperity, when these choices are left entirely in the hands of a small elite, you should expect that group to receive most of the benefits, while everyone else bears the costs—potentially for a long time.

Rapid advances in AI threaten to eliminate many jobs, and not just those of writers and actors. Jobs with routine elements, such as in regulatory compliance or clerical work, and those that involve simple data collection, data summary, and writing tasks are likely to disappear.

But there are still two distinct paths that this AI revolution could take. One is the path of automation, based on the idea that AI’s role is to perform tasks as well as or better than people. Currently, this vision dominates in the US tech sector, where Microsoft and Google (and their ecosystems) are cranking hard to create new AI applications that can take over as many human tasks as possible.

The negative impact on people along the “just automate” path is easy to predict from prior waves of digital technologies and robotics. It was these earlier forms of automation that contributed to the decline of American manufacturing employment and the huge increase in inequality over the last four decades. If AI intensifies automation, we are very likely to get more of the same—a gap between capital and labor, more inequality between the professional class and the rest of the workers, and fewer good jobs in the economy….(More)”

Artificial Intelligence and the Labor Force


Report by by Tobias Sytsma, and Éder M. Sousa: “The rapid development of artificial intelligence (AI) has the potential to revolutionize the labor force with new generative AI tools that are projected to contribute trillions of dollars to the global economy by 2040. However, this opportunity comes with concerns about the impact of AI on workers and labor markets. As AI technology continues to evolve, there is a growing need for research to understand the technology’s implications for workers, firms, and markets. This report addresses this pressing need by exploring the relationship between occupational exposure and AI-related technologies, wages, and employment.

Using natural language processing (NLP) to identify semantic similarities between job task descriptions and U.S. technology patents awarded between 1976 and 2020, the authors evaluate occupational exposure to all technology patents in the United States, as well as to specific AI technologies, including machine learning, NLP, speech recognition, planning control, AI hardware, computer vision, and evolutionary computation.

The authors’ findings suggest that exposure to both general technology and AI technology patents is not uniform across occupational groups, over time, or across technology categories. They estimate that up to 15 percent of U.S. workers were highly exposed to AI technology patents by 2019 and find that the correlation between technology exposure and employment growth can depend on the routineness of the occupation. This report contributes to the growing literature on the labor market implications of AI and provides insights that can inform policy discussions around this emerging issue…(More)”

Generative AI, Jobs, and Policy Response


Paper by the Global Partnership on AI: “Generative AI and the Future of Work remains notably absent from the global AI governance dialogue. Given the transformative potential of this technology in the workplace, this oversight suggests a significant gap, especially considering the substantial implications this technology has for workers, economies and society at large. As interest grows in the effects of Generative AI on occupations, debates centre around roles being replaced or enhanced by technology. Yet there is an incognita, the “Big Unknown”, an important number of workers whose future depends on decisions yet to be made
In this brief, recent articles about the topic are surveyed with special attention to the “Big Unknown”. It is not a marginal number: nearly 9% of the workforce, or 281 million workers worldwide, are in this category. Unlike previous AI developments which focused on automating narrow tasks, Generative AI models possess the scope, versatility, and economic viability to impact jobs across multiple industries and at varying skill levels. Their ability to produce human-like outputs in areas like language, content creation and customer interaction, combined with rapid advancement and low deployment costs, suggest potential near-term impacts that are much broader and more abrupt than prior waves of AI. Governments, companies, and social partners should aim to minimize any potential negative effects from Generative AI technology in the world of work, as well as harness potential opportunities to support productivity growth and decent work. This brief presents concrete policy recommendations at the global and local level. These insights, are aimed to guide the discourse towards a balanced and fair integration of Generative AI in our professional landscape To navigate this uncertain landscape and ensure that the benefits of Generative AI are equitably distributed, we recommend 10 policy actions that could serve as a starting point for discussion and implementation…(More)”.

These Prisoners Are Training AI


Article by Morgan Meaker: “…Around the world, millions of so-called “clickworkers” train artificial intelligence models, teaching machines the difference between pedestrians and palm trees, or what combination of words describe violence or sexual abuse. Usually these workers are stationed in the global south, where wages are cheap. OpenAI, for example, uses an outsourcing firm that employs clickworkers in Kenya, Uganda, and India. That arrangement works for American companies, operating in the world’s most widely spoken language, English. But there are not a lot of people in the global south who speak Finnish.

That’s why Metroc turned to prison labor. The company gets cheap, Finnish-speaking workers, while the prison system can offer inmates employment that, it says, prepares them for the digital world of work after their release. Using prisoners to train AI creates uneasy parallels with the kind of low-paid and sometimes exploitive labor that has often existed downstream in technology. But in Finland, the project has received widespread support.

“There’s this global idea of what data labor is. And then there’s what happens in Finland, which is very different if you look at it closely,” says Tuukka Lehtiniemi, a researcher at the University of Helsinki, who has been studying data labor in Finnish prisons.

For four months, Marmalade has lived here, in Hämeenlinna prison. The building is modern, with big windows. Colorful artwork tries to enforce a sense of cheeriness on otherwise empty corridors. If it wasn’t for the heavy gray security doors blocking every entry and exit, these rooms could easily belong to a particularly soulless school or university complex.

Finland might be famous for its open prisons—where inmates can work or study in nearby towns—but this is not one of them. Instead, Hämeenlinna is the country’s highest-security institution housing exclusively female inmates. Marmalade has been sentenced to six years. Under privacy rules set by the prison, WIRED is not able to publish Marmalade’s real name, exact age, or any other information that could be used to identify her. But in a country where prisoners serving life terms can apply to be released after 12 years, six years is a heavy sentence. And like the other 100 inmates who live here, she is not allowed to leave…(More)”.