Trust but Verify: A Guide to Conducting Due Diligence When Leveraging Non-Traditional Data in the Public Interest


New Report by Sara Marcucci, Andrew J. Zahuranec, and Stefaan Verhulst: “In an increasingly data-driven world, organizations across sectors are recognizing the potential of non-traditional data—data generated from sources outside conventional databases, such as social media, satellite imagery, and mobile usage—to provide insights into societal trends and challenges. When harnessed thoughtfully, this data can improve decision-making and bolster public interest projects in areas as varied as disaster response, healthcare, and environmental protection. However, with these new data streams come heightened ethical, legal, and operational risks that organizations need to manage responsibly. That’s where due diligence comes in, helping to ensure that data initiatives are beneficial and ethical.

The report, Trust but Verify: A Guide to Conducting Due Diligence When Leveraging Non-Traditional Data in the Public Interest, co-authored by Sara Marcucci, Andrew J. Zahuranec, and Stefaan Verhulst, offers a comprehensive framework to guide organizations in responsible data partnerships. Whether you’re a public agency or a private enterprise, this report provides a six-step process to ensure due diligence and maintain accountability, integrity, and trust in data initiatives…(More) (Blog)”.

Beyond checking a box: how a social licence can help communities benefit from data reuse and AI


Article by Stefaan Verhulst and Peter Addo: “In theory, consent offers a mechanism to reduce power imbalances. In reality, existing consent mechanisms are limited and, in many respects, archaic, based on binary distinctions – typically presented in check-the-box forms that most websites use to ask you to register for marketing e-mails – that fail to appreciate the nuance and context-sensitive nature of data reuse. Consent today generally means individual consent, a notion that overlooks the broader needs of communities and groups.

While we understand the need to safeguard information about an individual such as, say, their health status, this information can help address or even prevent societal health crises. Individualised notions of consent fail to consider the potential public good of reusing individual data responsibly. This makes them particularly problematic in societies that have more collective orientations, where prioritising individual choices could disrupt the social fabric.

The notion of a social licence, which has its roots in the 1990s within the extractive industries, refers to the collective acceptance of an activity, such as data reuse, based on its perceived alignment with community values and interests. Social licences go beyond the priorities of individuals and help balance the risks of data misuse and missed use (for example, the risks of violating privacy vs. neglecting to use private data for public good). Social licences permit a broader notion of consent that is dynamic, multifaceted and context-sensitive.

Policymakers, citizens, health providers, think tanks, interest groups and private industry must accept the concept of a social licence before it can be established. The goal for all stakeholders is to establish widespread consensus on community norms and an acceptable balance of social risk and opportunity.

Community engagement can create a consensus-based foundation for preferences and expectations concerning data reuse. Engagement could take place via dedicated “data assemblies” or community deliberations about data reuse for particular purposes under particular conditions. The process would need to involve voices as representative as possible of the different parties involved, and include those that are traditionally marginalised or silenced…(More)”.

Announcing SPARROW: A Breakthrough AI Tool to Measure and Protect Earth’s Biodiversity in the Most Remote Places


Blog by Juan Lavista Ferres: “The biodiversity of our planet is rapidly declining. We’ve likely reached a tipping point where it is crucial to use every tool at our disposal to help preserve what remains. That’s why I am pleased to announce SPARROW—Solar-Powered Acoustic and Remote Recording Observation Watch, developed by Microsoft’s AI for Good Lab. SPARROW is an AI-powered edge computing solution designed to operate autonomously in the most remote corners of the planet. Solar-powered and equipped with advanced sensors, it collects biodiversity data—from camera traps, acoustic monitors, and other environmental detectors—that are processed using our most advanced PyTorch-based wildlife AI models on low-energy edge GPUs. The resulting critical information is then transmitted via low-Earth orbit satellites directly to the cloud, allowing researchers to access fresh, actionable insights in real time, no matter where they are. 

Think of SPARROW as a network of Earth-bound satellites, quietly observing and reporting on the health of our ecosystems without disrupting them. By leveraging solar energy, these devices can run for a long time, minimizing their footprint and any potential harm to the environment…(More)”.

Harnessing AI: How to develop and integrate automated prediction systems for humanitarian anticipatory action


CEPR Report: “Despite unprecedented access to data, resources, and wealth, the world faces an escalating wave of humanitarian crises. Armed conflict, climate-induced disasters, and political instability are displacing millions and devastating communities. Nearly one in every five children are living in or fleeing conflict zones (OCHA, 2024). Often the impacts of conflict and climatic hazards – such as droughts and flood – exacerbate each other, leading to even greater suffering. As crises unfold and escalate, the need for timely and effective humanitarian action becomes paramount.

Sophisticated systems for forecasting and monitoring natural and man-made hazards have emerged as critical tools to help inform and prompt action. The full potential for the use of such automated forecasting systems to inform anticipatory action (AA) is immense but is still to be realised. By providing early warnings and predictive insights, these systems could help organisations allocate resources more efficiently, plan interventions more effectively, and ultimately save lives and prevent or reduce humanitarian impact.


This Policy Insight provides an account of the significant technical, ethical, and organisational difficulties involved in such systems, and the current solutions in place…(More)”.

Harvard Is Releasing a Massive Free AI Training Dataset Funded by OpenAI and Microsoft


Article by Kate Knibbs: “Harvard University announced Thursday it’s releasing a high-quality dataset of nearly 1 million public-domain books that could be used by anyone to train large language models and other AI tools. The dataset was created by Harvard’s newly formed Institutional Data Initiative with funding from both Microsoft and OpenAI. It contains books scanned as part of the Google Books project that are no longer protected by copyright.

Around five times the size of the notorious Books3 dataset that was used to train AI models like Meta’s Llama, the Institutional Data Initiative’s database spans genres, decades, and languages, with classics from Shakespeare, Charles Dickens, and Dante included alongside obscure Czech math textbooks and Welsh pocket dictionaries. Greg Leppert, executive director of the Institutional Data Initiative, says the project is an attempt to “level the playing field” by giving the general public, including small players in the AI industry and individual researchers, access to the sort of highly-refined and curated content repositories that normally only established tech giants have the resources to assemble. “It’s gone through rigorous review,” he says…(More)”.

How Years of Reddit Posts Have Made the Company an AI Darling


Article by Sarah E. Needleman: “Artificial-intelligence companies were one of Reddit’s biggest frustrations last year. Now they are a key source of growth for the social-media platform. 

These companies have an insatiable appetite for online data to train their models and display content in an easy-to-digest format. In mid-2023, Reddit, a social-media veteran and IPO newbie, turned off the spigot and began charging some businesses for access to its data. 

It turns out that Reddit’s ever-growing 19-year warehouse of user commentary makes it an attractive resource for AI companies. The platform recently reported its first quarterly profit as a publicly traded company, thanks partly to data-licensing deals it made in the past year with OpenAI and Google.

Reddit Chief Executive and co-founder Steve Huffman has said the company had to stop giving away its valuable data to the world’s largest companies for free. 

“It is an arms race,” he said at The Wall Street Journal’s Tech Live conference in October. “But we’re in talks with just about everybody, so we’ll see where these things land.”

Reddit’s huge amount of data works well for AI companies because it is organized by topics and uses a voting system instead of an algorithm to sort content quality, and because people’s posts tend to be candid.

For the first nine months of 2024, Reddit’s revenue category that includes licensing grew to $81.6 million from $12.3 million a year earlier.

While data-licensing revenue remains dwarfed by Reddit’s core advertising sales, the new category’s rapid growth reveals a potential lucrative business line with relatively high margins.

Diversifying away from a reliance on advertising, while tapping into an AI-adjacent market, has also made Reddit attractive to investors who are searching for new exposure to the latest technology boom. Reddit’s stock has more than doubled in the past three months.

The source of Reddit’s newfound wealth is the burgeoning market for AI-useful data. Reddit’s willingness to sell its data to AI outfits makes it stand out, because there is only a finite amount of data available for AI companies to gobble up for free or purchase. Some executives and researchers say the industry’s need for high-quality text could outstrip supply within two years, potentially slowing AI’s development…(More)”.

The politics of data justice: exit, voice, or rehumanisation?


Paper by Azadeh Akbari: “Although many data justice projects envision just datafied societies, their focus on participatory ‘solutions’ to remedy injustice leaves important discussions out. For example, there has been little discussion of the meaning of data justice and its participatory underpinnings in authoritarian contexts. Additionally, the subjects of data justice are treated as universal decision-making individuals unaffected by the procedures of datafication itself. To tackle such questions, this paper starts with studying the trajectory of data justice as a concept and reflects on both its data and justice elements. It conceptualises data as embedded within a network of associations opening up a multi-level, multi-actor, intersectional understanding of data justice. Furthermore, it discusses five major conceptualisations of data justice based on social justice, capabilities, structural, sphere transgression, and abnormality of justice approaches. Discussing the limits and potentials of each of these categories, the paper argues that many of the existing participatory approaches are formulated within the neoliberal binary of choice: exit or voice (Hirschman, Citation1970). Transcending this binary and using postcolonial theories, the paper discusses the dehumanisation of individuals and groups as an integral part of datafication and underlines the inadequacy of digital harms, data protection, and privacy discourses in that regard. Finally, the paper reflects on the politics of data justice as an emancipatory concept capable of transforming standardised concepts such as digital literacy to liberating pedagogies for reclaiming the lost humanity of the oppressed (Freire, Citation1970) or evoking the possibility for multiple trajectories beyond the emerging hegemony of data capitalism…(More)”.

This is where the data to build AI comes from


Article by Melissa Heikkilä and Stephanie Arnett: “AI is all about data. Reams and reams of data are needed to train algorithms to do what we want, and what goes into the AI models determines what comes out. But here’s the problem: AI developers and researchers don’t really know much about the sources of the data they are using. AI’s data collection practices are immature compared with the sophistication of AI model development. Massive data sets often lack clear information about what is in them and where it came from. 

The Data Provenance Initiative, a group of over 50 researchers from both academia and industry, wanted to fix that. They wanted to know, very simply: Where does the data to build AI come from? They audited nearly 4,000 public data sets spanning over 600 languages, 67 countries, and three decades. The data came from 800 unique sources and nearly 700 organizations. 

Their findings, shared exclusively with MIT Technology Review, show a worrying trend: AI’s data practices risk concentrating power overwhelmingly in the hands of a few dominant technology companies. 

In the early 2010s, data sets came from a variety of sources, says Shayne Longpre, a researcher at MIT who is part of the project. 

It came not just from encyclopedias and the web, but also from sources such as parliamentary transcripts, earning calls, and weather reports. Back then, AI data sets were specifically curated and collected from different sources to suit individual tasks, Longpre says.

Then transformers, the architecture underpinning language models, were invented in 2017, and the AI sector started seeing performance get better the bigger the models and data sets were. Today, most AI data sets are built by indiscriminately hoovering material from the internet. Since 2018, the web has been the dominant source for data sets used in all media, such as audio, images, and video, and a gap between scraped data and more curated data sets has emerged and widened.

“In foundation model development, nothing seems to matter more for the capabilities than the scale and heterogeneity of the data and the web,” says Longpre. The need for scale has also boosted the use of synthetic data massively.

The past few years have also seen the rise of multimodal generative AI models, which can generate videos and images. Like large language models, they need as much data as possible, and the best source for that has become YouTube. 

For video models, as you can see in this chart, over 70% of data for both speech and image data sets comes from one source.

This could be a boon for Alphabet, Google’s parent company, which owns YouTube. Whereas text is distributed across the web and controlled by many different websites and platforms, video data is extremely concentrated in one platform.

“It gives a huge concentration of power over a lot of the most important data on the web to one company,” says Longpre…(More)”.

Must NLP be Extractive?


Paper by Steven Bird: “How do we roll out language technologies across a world with 7,000 languages? In one story, we scale the successes of NLP further into ‘low-resource’ languages, doing ever more with less. However, this approach does not recognise the fact that – beyond the 500 institutional languages – the remaining languages are oral vernaculars. These speech communities interact with the outside world using a ‘con-
tact language’. I argue that contact languages are the appropriate target for technologies like speech recognition and machine translation, and that the 6,500 oral vernaculars should be approached differently. I share stories from an Indigenous community where local people reshaped an extractive agenda to align with their relational agenda. I describe the emerging paradigm of Relational NLP and explain how it opens the way to non-extractive methods and to solutions that enhance human agency…(More)”

Navigating the AI Frontier: A Primer on the Evolution and Impact of AI Agents


Report by the World Economic Forum: “AI agents are autonomous systems capable of sensing, learning and acting upon their environments. This white paper explores their development and looks at how they are linked to recent advances in large language and multimodal models. It highlights how AI agents can enhance efficiency across sectors including healthcare, education and finance.

Tracing their evolution from simple rule-based programmes to sophisticated entities with complex decision-making abilities, the paper discusses both the benefits and the risks associated with AI agents. Ethical considerations such as transparency and accountability are emphasized, highlighting the need for robust governance frameworks and cross-sector collaboration.

By understanding the opportunities and challenges that AI agents present, stakeholders can responsibly leverage these systems to drive innovation, improve practices and enhance quality of life. This primer serves as a valuable resource for anyone seeking to gain a better grasp of this rapidly advancing field…(More)”.