Is artificial intelligence key to dengue prevention?


BreakDengue: “Dengue fever outbreaks are increasing in both frequency and magnitude. Not only that, the number of countries that could potentially be affected by the disease is growing all the time.

This growth has led to renewed efforts to address the disease, and a pioneering Malaysian researcher was recently recognized for his efforts to harness the power of big data and artificial intelligence to accurately predict dengue outbreaks.

Dr. Dhesi Baha Raja received the Pistoia Alliance Life Science Award at King’s College London in April of this year, for developing a disease prediction platform that employs technology and data to give people prior warning of when disease outbreaks occur.The medical doctor and epidemiologist has spent years working to develop AIME (Artificial Intelligence in Medical Epidemiology)…

it relies on a complex algorithm, which analyses a wide range of data collected by local government and also satellite image recognition systems. Over 20 variables such as weather, wind speed, wind direction, thunderstorm, solar radiation and rainfall schedule are included and analyzed. Population models and geographical terrain are also included. The ultimate result of this intersection between epidemiology, public health and technology is a map, which clearly illustrates the probability and location of the next dengue outbreak.

The ground-breaking platform can predict dengue fever outbreaks up to two or three months in advance, with an accuracy approaching 88.7 per cent and within a 400m radius. Dr. Dhesi has just returned from Rio de Janeiro, where the platform was employed in a bid to fight dengue in advance of this summer’s Olympics. In Brazil, its perceived accuracy was around 84 per cent, whereas in Malaysia in was over 88 per cent – giving it an average accuracy of 86.37 per cent.

The web-based application has been tested in two states within Malaysia, Kuala Lumpur, and Selangor, and the first ever mobile app is due to be deployed across Malaysia soon. Once its capability is adequately tested there, it will be rolled out globally. Dr. Dhesi’s team are working closely with mobile digital service provider Webe on this.

By making the app free to download, this will ensure the service becomes accessible to all, Dr Dhesi explains.
“With the web-based application, this could only be used by public health officials and agencies. We recognized the need for us to democratize this health service to the community, and the only way to do this is to provide the community with the mobile app.”
This will also enable the gathering of even greater knowledge on the possibility of dengue outbreaks in high-risk areas, as well as monitoring the changing risks as people move to different areas, he adds….(More)”

Selected Readings on Data Collaboratives


By Neil Britto, David Sangokoya, Iryna Susha, Stefaan Verhulst and Andrew Young

The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of data collaboratives was originally published in 2017.

The term data collaborative refers to a new form of collaboration, beyond the public-private partnership model, in which participants from different sectors (including private companies, research institutions, and government agencies ) can exchange data to help solve public problems. Several of society’s greatest challenges — from addressing climate change to public health to job creation to improving the lives of children — require greater access to data, more collaboration between public – and private-sector entities, and an increased ability to analyze datasets. In the coming months and years, data collaboratives will be essential vehicles for harnessing the vast stores of privately held data toward the public good.

Selected Reading List (in alphabetical order)

Annotated Selected Readings List (in alphabetical order)

Agaba, G., Akindès, F., Bengtsson, L., Cowls, J., Ganesh, M., Hoffman, N., . . . Meissner, F. “Big Data and Positive Social Change in the Developing World: A White Paper for Practitioners and Researchers.” 2014. http://bit.ly/25RRC6N.

  • This white paper, produced by “a group of activists, researchers and data experts” explores the potential of big data to improve development outcomes and spur positive social change in low- and middle-income countries. Using examples, the authors discuss four areas in which the use of big data can impact development efforts:
    • Advocating and facilitating by “opening[ing] up new public spaces for discussion and awareness building;
    • Describing and predicting through the detection of “new correlations and the surfac[ing] of new questions;
    • Facilitating information exchange through “multiple feedback loops which feed into both research and action,” and
    • Promoting accountability and transparency, especially as a byproduct of crowdsourcing efforts aimed at “aggregat[ing] and analyz[ing] information in real time.
  • The authors argue that in order to maximize the potential of big data’s use in development, “there is a case to be made for building a data commons for private/public data, and for setting up new and more appropriate ethical guidelines.”
  • They also identify a number of challenges, especially when leveraging data made accessible from a number of sources, including private sector entities, such as:
    • Lack of general data literacy;
    • Lack of open learning environments and repositories;
    • Lack of resources, capacity and access;
    • Challenges of sensitivity and risk perception with regard to using data;
    • Storage and computing capacity; and
    • Externally validating data sources for comparison and verification.

Ansell, C. and Gash, A. “Collaborative Governance in Theory and Practice.” Journal of Public Administration Research and  Theory 18 (4), 2008. http://bit.ly/1RZgsI5.

  • This article describes collaborative arrangements that include public and private organizations working together and proposes a model for understanding an emergent form of public-private interaction informed by 137 diverse cases of collaborative governance.
  • The article suggests factors significant to successful partnering processes and outcomes include:
    • Shared understanding of challenges,
    • Trust building processes,
    • The importance of recognizing seemingly modest progress, and
    • Strong indicators of commitment to the partnership’s aspirations and process.
  • The authors provide a ‘’contingency theory model’’ that specifies relationships between different variables that influence outcomes of collaborative governance initiatives. Three “core contingencies’’ for successful collaborative governance initiatives identified by the authors are:
    • Time (e.g., decision making time afforded to the collaboration);
    • Interdependence (e.g., a high degree of interdependence can mitigate negative effects of low trust); and
    • Trust (e.g. a higher level of trust indicates a higher probability of success).

Ballivian A, Hoffman W. “Public-Private Partnerships for Data: Issues Paper for Data Revolution Consultation.” World Bank, 2015. Available from: http://bit.ly/1ENvmRJ

  • This World Bank report provides a background document on forming public-prviate partnerships for data with the private sector in order to inform the UN’s Independent Expert Advisory Group (IEAG) on sustaining a “data revolution” in sustainable development.
  • The report highlights the critical position of private companies within the data value chain and reflects on key elements of a sustainable data PPP: “common objectives across all impacted stakeholders, alignment of incentives, and sharing of risks.” In addition, the report describes the risks and incentives of public and private actors, and the principles needed to “build[ing] the legal, cultural, technological and economic infrastructures to enable the balancing of competing interests.” These principles include understanding; experimentation; adaptability; balance; persuasion and compulsion; risk management; and governance.
  • Examples of data collaboratives cited in the report include HP Earth Insights, Orange Data for Development Challenges, Amazon Web Services, IBM Smart Cities Initiative, and the Governance Lab’s Open Data 500.

Brack, Matthew, and Tito Castillo. “Data Sharing for Public Health: Key Lessons from Other Sectors.” Chatham House, Centre on Global Health Security. April 2015. Available from: http://bit.ly/1DHFGVl

  • The Chatham House report provides an overview on public health surveillance data sharing, highlighting the benefits and challenges of shared health data and the complexity in adapting technical solutions from other sectors for public health.
  • The report describes data sharing processes from several perspectives, including in-depth case studies of actual data sharing in practice at the individual, organizational and sector levels. Among the key lessons for public health data sharing, the report strongly highlights the need to harness momentum for action and maintain collaborative engagement: “Successful data sharing communities are highly collaborative. Collaboration holds the key to producing and abiding by community standards, and building and maintaining productive networks, and is by definition the essence of data sharing itself. Time should be invested in establishing and sustaining collaboration with all stakeholders concerned with public health surveillance data sharing.”
  • Examples of data collaboratives include H3Africa (a collaboration between NIH and Wellcome Trust) and NHS England’s care.data programme.

de Montjoye, Yves-Alexandre, Jake Kendall, and Cameron F. Kerry. “Enabling Humanitarian Use of Mobile Phone Data.” The Brookings Institution, Issues in Technology Innovation. November 2014. Available from: http://brook.gs/1JxVpxp

  • Using Ebola as a case study, the authors describe the value of using private telecom data for uncovering “valuable insights into understanding the spread of infectious diseases as well as strategies into micro-target outreach and driving update of health-seeking behavior.”
  • The authors highlight the absence of a common legal and standards framework for “sharing mobile phone data in privacy-conscientious ways” and recommend “engaging companies, NGOs, researchers, privacy experts, and governments to agree on a set of best practices for new privacy-conscientious metadata sharing models.”

Eckartz, Silja M., Hofman, Wout J., Van Veenstra, Anne Fleur. “A decision model for data sharing.” Vol. 8653 LNCS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2014. http://bit.ly/21cGWfw.

  • This paper proposes a decision model for data sharing of public and private data based on literature review and three case studies in the logistics sector.
  • The authors identify five categories of the barriers to data sharing and offer a decision model for identifying potential interventions to overcome each barrier:
    • Ownership. Possible interventions likely require improving trust among those who own the data through, for example, involvement and support from higher management
    • Privacy. Interventions include “anonymization by filtering of sensitive information and aggregation of data,” and access control mechanisms built around identity management and regulated access.  
    • Economic. Interventions include a model where data is shared only with a few trusted organizations, and yield management mechanisms to ensure negative financial consequences are avoided.
    • Data quality. Interventions include identifying additional data sources that could improve the completeness of datasets, and efforts to improve metadata.
    • Technical. Interventions include making data available in structured formats and publishing data according to widely agreed upon data standards.

Hoffman, Sharona and Podgurski, Andy. “The Use and Misuse of Biomedical Data: Is Bigger Really Better?” American Journal of Law & Medicine 497, 2013. http://bit.ly/1syMS7J.

  • This journal articles explores the benefits and, in particular, the risks related to large-scale biomedical databases bringing together health information from a diversity of sources across sectors. Some data collaboratives examined in the piece include:
    • MedMining – a company that extracts EHR data, de-identifies it, and offers it to researchers. The data sets that MedMining delivers to its customers include ‘lab results, vital signs, medications, procedures, diagnoses, lifestyle data, and detailed costs’ from inpatient and outpatient facilities.
    • Explorys has formed a large healthcare database derived from financial, administrative, and medical records. It has partnered with major healthcare organizations such as the Cleveland Clinic Foundation and Summa Health System to aggregate and standardize health information from ten million patients and over thirty billion clinical events.
  • Hoffman and Podgurski note that biomedical databases populated have many potential uses, with those likely to benefit including: “researchers, regulators, public health officials, commercial entities, lawyers,” as well as “healthcare providers who conduct quality assessment and improvement activities,” regulatory monitoring entities like the FDA, and “litigants in tort cases to develop evidence concerning causation and harm.”
  • They argue, however, that risks arise based on:
    • The data contained in biomedical databases is surprisingly likely to be incorrect or incomplete;
    • Systemic biases, arising from both the nature of the data and the preconceptions of investigators are serious threats the validity of research results, especially in answering causal questions;
  • Data mining of biomedical databases makes it easier for individuals with political, social, or economic agendas to generate ostensibly scientific but misleading research findings for the purpose of manipulating public opinion and swaying policymakers.

Krumholz, Harlan M., et al. “Sea Change in Open Science and Data Sharing Leadership by Industry.” Circulation: Cardiovascular Quality and Outcomes 7.4. 2014. 499-504. http://1.usa.gov/1J6q7KJ

  • This article provides a comprehensive overview of industry-led efforts and cross-sector collaborations in data sharing by pharmaceutical companies to inform clinical practice.
  • The article details the types of data being shared and the early activities of GlaxoSmithKline (“in coordination with other companies such as Roche and ViiV”); Medtronic and the Yale University Open Data Access Project; and Janssen Pharmaceuticals (Johnson & Johnson). The article also describes the range of involvement in data sharing among pharmaceutical companies including Pfizer, Novartis, Bayer, AbbVie, Eli Llly, AstraZeneca, and Bristol-Myers Squibb.

Mann, Gideon. “Private Data and the Public Good.” Medium. May 17, 2016. http://bit.ly/1OgOY68.

    • This Medium post from Gideon Mann, the Head of Data Science at Bloomberg, shares his prepared remarks given at a lecture at the City College of New York. Mann argues for the potential benefits of increasing access to private sector data, both to improve research and academic inquiry and also to help solve practical, real-world problems. He also describes a number of initiatives underway at Bloomberg along these lines.    
  • Mann argues that data generated at private companies “could enable amazing discoveries and research,” but is often inaccessible to those who could put it to those uses. Beyond research, he notes that corporate data could, for instance, benefit:
      • Public health – including suicide prevention, addiction counseling and mental health monitoring.
    • Legal and ethical questions – especially as they relate to “the role algorithms have in decisions about our lives,” such as credit checks and resume screening.
  • Mann recognizes the privacy challenges inherent in private sector data sharing, but argues that it is a common misconception that the only two choices are “complete privacy or complete disclosure.” He believes that flexible frameworks for differential privacy could open up new opportunities for responsibly leveraging data collaboratives.

Pastor Escuredo, D., Morales-Guzmán, A. et al, “Flooding through the Lens of Mobile Phone Activity.” IEEE Global Humanitarian Technology Conference, GHTC 2014. Available from: http://bit.ly/1OzK2bK

  • This report describes the impact of using mobile data in order to understand the impact of disasters and improve disaster management. The report was conducted in the Mexican state of Tabasco in 2009 as a multidisciplinary, multi-stakeholder consortium involving the UN World Food Programme (WFP), Telefonica Research, Technical University of Madrid (UPM), Digital Strategy Coordination Office of the President of Mexico, and UN Global Pulse.
  • Telefonica Research, a division of the major Latin American telecommunications company, provided call detail records covering flood-affected areas for nine months. This data was combined with “remote sensing data (satellite images), rainfall data, census and civil protection data.” The results of the data demonstrated that “analysing mobile activity during floods could be used to potentially locate damaged areas, efficiently assess needs and allocate resources (for example, sending supplies to affected areas).”
  • In addition to the results, the study highlighted “the value of a public-private partnership on using mobile data to accurately indicate flooding impacts in Tabasco, thus improving early warning and crisis management.”

* Perkmann, M. and Schildt, H. “Open data partnerships between firms and universities: The role of boundary organizations.” Research Policy, 44(5), 2015. http://bit.ly/25RRJ2c

  • This paper discusses the concept of a “boundary organization” in relation to industry-academic partnerships driven by data. Boundary organizations perform mediated revealing, allowing firms to disclose their research problems to a broad audience of innovators and simultaneously minimize the risk that this information would be adversely used by competitors.
  • The authors identify two especially important challenges for private firms to enter open data or participate in data collaboratives with the academic research community that could be addressed through more involvement from boundary organizations:
    • First is a challenge of maintaining competitive advantage. The authors note that, “the more a firm attempts to align the efforts in an open data research programme with its R&D priorities, the more it will have to reveal about the problems it is addressing within its proprietary R&D.”
    • Second, involves the misalignment of incentives between the private and academic field. Perkmann and Schildt argue that, a firm seeking to build collaborations around its opened data “will have to provide suitable incentives that are aligned with academic scientists’ desire to be rewarded for their work within their respective communities.”

Robin, N., Klein, T., & Jütting, J. “Public-Private Partnerships for Statistics: Lessons Learned, Future Steps.” OECD. 2016. http://bit.ly/24FLYlD.

  • This working paper acknowledges the growing body of work on how different types of data (e.g, telecom data, social media, sensors and geospatial data, etc.) can address data gaps relevant to National Statistical Offices (NSOs).
  • Four models of public-private interaction for statistics are describe: in-house production of statistics by a data-provider for a national statistics office (NSO), transfer of data-sets to NSOs from private entities, transfer of data to a third party provider to manage the NSO and private entity data, and the outsourcing of NSO functions.
  • The paper highlights challenges to public-private partnerships involving data (e.g., technical challenges, data confidentiality, risks, limited incentives for participation), suggests deliberate and highly structured approaches to public-private partnerships involving data require enforceable contracts, emphasizes the trade-off between data specificity and accessibility of such data, and the importance of pricing mechanisms that reflect the capacity and capability of national statistic offices.
  • Case studies referenced in the paper include:
    • A mobile network operator’s (MNO Telefonica) in house analysis of call detail records;
    • A third-party data provider and steward of travel statistics (Positium);
    • The Data for Development (D4D) challenge organized by MNO Orange; and
    • Statistics Netherlands use of social media to predict consumer confidence.

Stuart, Elizabeth, Samman, Emma, Avis, William, Berliner, Tom. “The data revolution: finding the missing millions.” Overseas Development Institute, 2015. Available from: http://bit.ly/1bPKOjw

  • The authors of this report highlight the need for good quality, relevant, accessible and timely data for governments to extend services into underrepresented communities and implement policies towards a sustainable “data revolution.”
  • The solutions focused on this recent report from the Overseas Development Institute focus on capacity-building activities of national statistical offices (NSOs), alternative sources of data (including shared corporate data) to address gaps, and building strong data management systems.

Taylor, L., & Schroeder, R. “Is bigger better? The emergence of big data as a tool for international development policy.” GeoJournal, 80(4). 2015. 503-518. http://bit.ly/1RZgSy4.

  • This journal article describes how privately held data – namely “digital traces” of consumer activity – “are becoming seen by policymakers and researchers as a potential solution to the lack of reliable statistical data on lower-income countries.
  • They focus especially on three categories of data collaborative use cases:
    • Mobile data as a predictive tool for issues such as human mobility and economic activity;
    • Use of mobile data to inform humanitarian response to crises; and
    • Use of born-digital web data as a tool for predicting economic trends, and the implications these have for LMICs.
  • They note, however, that a number of challenges and drawbacks exist for these types of use cases, including:
    • Access to private data sources often must be negotiated or bought, “which potentially means substituting negotiations with corporations for those with national statistical offices;”
    • The meaning of such data is not always simple or stable, and local knowledge is needed to understand how people are using the technologies in question
    • Bias in proprietary data can be hard to understand and quantify;
    • Lack of privacy frameworks; and
    • Power asymmetries, wherein “LMIC citizens are unwittingly placed in a panopticon staffed by international researchers, with no way out and no legal recourse.”

van Panhuis, Willem G., Proma Paul, Claudia Emerson, John Grefenstette, Richard Wilder, Abraham J. Herbst, David Heymann, and Donald S. Burke. “A systematic review of barriers to data sharing in public health.” BMC public health 14, no. 1 (2014): 1144. Available from: http://bit.ly/1JOBruO

  • The authors of this report provide a “systematic literature of potential barriers to public health data sharing.” These twenty potential barriers are classified in six categories: “technical, motivational, economic, political, legal and ethical.” In this taxonomy, “the first three categories are deeply rooted in well-known challenges of health information systems for which structural solutions have yet to be found; the last three have solutions that lie in an international dialogue aimed at generating consensus on policies and instruments for data sharing.”
  • The authors suggest the need for a “systematic framework of barriers to data sharing in public health” in order to accelerate access and use of data for public good.

Verhulst, Stefaan and Sangokoya, David. “Mapping the Next Frontier of Open Data: Corporate Data Sharing.” In: Gasser, Urs and Zittrain, Jonathan and Faris, Robert and Heacock Jones, Rebekah, “Internet Monitor 2014: Reflections on the Digital World: Platforms, Policy, Privacy, and Public Discourse (December 15, 2014).” Berkman Center Research Publication No. 2014-17. http://bit.ly/1GC12a2

  • This essay describe a taxonomy of current corporate data sharing practices for public good: research partnerships; prizes and challenges; trusted intermediaries; application programming interfaces (APIs); intelligence products; and corporate data cooperatives or pooling.
  • Examples of data collaboratives include: Yelp Dataset Challenge, the Digital Ecologies Research Partnerhsip, BBVA Innova Challenge, Telecom Italia’s Big Data Challenge, NIH’s Accelerating Medicines Partnership and the White House’s Climate Data Partnerships.
  • The authors highlight important questions to consider towards a more comprehensive mapping of these activities.

Verhulst, Stefaan and Sangokoya, David, 2015. “Data Collaboratives: Exchanging Data to Improve People’s Lives.” Medium. Available from: http://bit.ly/1JOBDdy

  • The essay refers to data collaboratives as a new form of collaboration involving participants from different sectors exchanging data to help solve public problems. These forms of collaborations can improve people’s lives through data-driven decision-making; information exchange and coordination; and shared standards and frameworks for multi-actor, multi-sector participation.
  • The essay cites four activities that are critical to accelerating data collaboratives: documenting value and measuring impact; matching public demand and corporate supply of data in a trusted way; training and convening data providers and users; experimenting and scaling existing initiatives.
  • Examples of data collaboratives include NIH’s Precision Medicine Initiative; the Mobile Data, Environmental Extremes and Population (MDEEP) Project; and Twitter-MIT’s Laboratory for Social Machines.

Verhulst, Stefaan, Susha, Iryna, Kostura, Alexander. “Data Collaboratives: matching Supply of (Corporate) Data to Solve Public Problems.” Medium. February 24, 2016. http://bit.ly/1ZEp2Sr.

  • This piece articulates a set of key lessons learned during a session at the International Data Responsibility Conference focused on identifying emerging practices, opportunities and challenges confronting data collaboratives.
  • The authors list a number of privately held data sources that could create positive public impacts if made more accessible in a collaborative manner, including:
    • Data for early warning systems to help mitigate the effects of natural disasters;
    • Data to help understand human behavior as it relates to nutrition and livelihoods in developing countries;
    • Data to monitor compliance with weapons treaties;
    • Data to more accurately measure progress related to the UN Sustainable Development Goals.
  • To the end of identifying and expanding on emerging practice in the space, the authors describe a number of current data collaborative experiments, including:
    • Trusted Intermediaries: Statistics Netherlands partnered with Vodafone to analyze mobile call data records in order to better understand mobility patterns and inform urban planning.
    • Prizes and Challenges: Orange Telecom, which has been a leader in this type of Data Collaboration, provided several examples of the company’s initiatives, such as the use of call data records to track the spread of malaria as well as their experience with Challenge 4 Development.
    • Research partnerships: The Data for Climate Action project is an ongoing large-scale initiative incentivizing companies to share their data to help researchers answer particular scientific questions related to climate change and adaptation.
    • Sharing intelligence products: JPMorgan Chase shares macro economic insights they gained leveraging their data through the newly established JPMorgan Chase Institute.
  • In order to capitalize on the opportunities provided by data collaboratives, a number of needs were identified:
    • A responsible data framework;
    • Increased insight into different business models that may facilitate the sharing of data;
    • Capacity to tap into the potential value of data;
    • Transparent stock of available data supply; and
    • Mapping emerging practices and models of sharing.

Vogel, N., Theisen, C., Leidig, J. P., Scripps, J., Graham, D. H., & Wolffe, G. “Mining mobile datasets to enable the fine-grained stochastic simulation of Ebola diffusion.” Paper presented at the Procedia Computer Science. 2015. http://bit.ly/1TZDroF.

  • The paper presents a research study conducted on the basis of the mobile calls records shared with researchers in the framework of the Data for Development Challenge by the mobile operator Orange.
  • The study discusses the data analysis approach in relation to developing a situation of Ebola diffusion built around “the interactions of multi-scale models, including viral loads (at the cellular level), disease progression (at the individual person level), disease propagation (at the workplace and family level), societal changes in migration and travel movements (at the population level), and mitigating interventions (at the abstract government policy level).”
  • The authors argue that the use of their population, mobility, and simulation models provide more accurate simulation details in comparison to high-level analytical predictions and that the D4D mobile datasets provide high-resolution information useful for modeling developing regions and hard to reach locations.

Welle Donker, F., van Loenen, B., & Bregt, A. K. “Open Data and Beyond.” ISPRS International Journal of Geo-Information, 5(4). 2016. http://bit.ly/22YtugY.

  • This research has developed a monitoring framework to assess the effects of open (private) data using a case study of a Dutch energy network administrator Liander.
  • Focusing on the potential impacts of open private energy data – beyond ‘smart disclosure’ where citizens are given information only about their own energy usage – the authors identify three attainable strategic goals:
    • Continuously optimize performance on services, security of supply, and costs;
    • Improve management of energy flows and insight into energy consumption;
    • Help customers save energy and switch over to renewable energy sources.
  • The authors propose a seven-step framework for assessing the impacts of Liander data, in particular, and open private data more generally:
    • Develop a performance framework to describe what the program is about, description of the organization’s mission and strategic goals;
    • Identify the most important elements, or key performance areas which are most critical to understanding and assessing your program’s success;
    • Select the most appropriate performance measures;
    • Determine the gaps between what information you need and what is available;
    • Develop and implement a measurement strategy to address the gaps;
    • Develop a performance report which highlights what you have accomplished and what you have learned;
    • Learn from your experiences and refine your approach as required.
  • While the authors note that the true impacts of this open private data will likely not come into view in the short term, they argue that, “Liander has successfully demonstrated that private energy companies can release open data, and has successfully championed the other Dutch network administrators to follow suit.”

World Economic Forum, 2015. “Data-driven development: pathways for progress.” Geneva: World Economic Forum. http://bit.ly/1JOBS8u

  • This report captures an overview of the existing data deficit and the value and impact of big data for sustainable development.
  • The authors of the report focus on four main priorities towards a sustainable data revolution: commercial incentives and trusted agreements with public- and private-sector actors; the development of shared policy frameworks, legal protections and impact assessments; capacity building activities at the institutional, community, local and individual level; and lastly, recognizing individuals as both produces and consumers of data.

White House Challenges Artificial Intelligence Experts to Reduce Incarceration Rates


Jason Shueh at GovTech: “The U.S. spends $270 billion on incarceration each year, has a prison population of about 2.2 million and an incarceration rate that’s spiked 220 percent since the 1980s. But with the advent of data science, White House officials are asking experts for help.

On Tuesday, June 7, the White House Office of Science and Technology Policy’s Lynn Overmann, who also leads the White House Police Data Initiative, stressed the severity of the nation’s incarceration crisis while asking a crowd of data scientists and artificial intelligence specialists for aid.

“We have built a system that is too large, and too unfair and too costly — in every sense of the word — and we need to start to change it,” Overmann said, speaking at a Computing Community Consortium public workshop.

She argued that the U.S., a country that has the highest amount incarcerated citizens in the world, is in need of systematic reforms with both data tools to process alleged offenders and at the policy level to ensure fair and measured sentences. As a longtime counselor, advisor and analyst for the Justice Department and at the city and state levels, Overman said she has studied and witnessed an alarming number of issues in terms of bias and unwarranted punishments.

For instance, she said that statistically, while drug use is about equal between African-Americans and Caucasians, African-Americans are more likely to be arrested and convicted. They also receive longer prison sentences compared to Caucasian inmates convicted of the same crimes….

Data and digital tools can help curb such pitfalls by increasing efficiency, transparency and accountability, she said.

“We think these types of data exchanges [between officials and technologists] can actually be hugely impactful if we can figure out how to take this information and operationalize it for the folks who run these systems,” Obermann noted.

The opportunities to apply artificial intelligence and data analytics, she said, might include using it to improve questions on parole screenings, using it to analyze police body camera footage, and applying it to criminal justice data for legislators and policy workers….

If the private sector is any indication, artificial intelligence and machine learning techniques could be used to interpret this new and vast supply of law enforcement data. In an earlier presentation by Eric Horvitz, the managing director at Microsoft Research, Horvitz showcased how the company has applied artificial intelligence to vision and language to interpret live video content for the blind. The app, titled SeeingAI, can translate live video footage, captured from an iPhone or a pair of smart glasses, into instant audio messages for the seeing impaired. Twitter’s live-streaming app Periscope has employed similar technology to guide users to the right content….(More)”

Fan Favorites


Erin Reilly at Strategy + Business: “…In theory, new technological advances such as big data and machine learning, combined with more direct access to audience sentiment, behaviors, and preferences via social media and over-the-top delivery channels, give the entertainment and media industry unprecedented insight into what the audience actually wants. But as a professional in the television industry put it, “We’re drowning in data and starving for insights.” Just as my data trail didn’t trace an accurate picture of my true interest in soccer, no data set can quantify all that consumers are as humans. At USC’s Annenberg Innovation Lab, our research has led us to an approach that blends data collection with a deep understanding of the social and cultural context in which the data is created. This can be a powerful practice for helping researchers understand the behavior of fans — fans of sports, brands, celebrities, and shows.

A Model for Understanding Fans

Marketers and creatives often see audiences and customers as passive assemblies of listeners or spectators. But we believe it’s more useful to view them as active participants. The best analogy may be fans. Broadly characterized, fans have a continued connection with the property they are passionate about. Some are willing to declare their affinity through engagement, some have an eagerness to learn more about their passion, and some want to connect with others who share their interests. Fans are emotionally linked to the object of their passion, and experience their passion through their own subjective lenses. We all start out as audience members. But sometimes, when the combination of factors aligns in just the right way, we become engaged as fans.

For businesses, the key to building this engagement and solidifying the relationship is understanding the different types of fan motivations in different contexts, and learning how to turn the data gathered about them into actionable insights. Even if Jane Smith and her best friend are fans of the same show, the same team, or the same brand, they’re likely passionate for different reasons. For example, some viewers may watch the ABC melodrama Scandal because they’re fashionistas and can’t wait to see the newest wardrobe of star Kerry Washington; others may do so because they’re obsessed with politics and want to see how the newly introduced Donald Trump–like character will behave. And those differences mean fans will respond in varied ways to different situations and content.
Though traditional demographics may give us basic information about who fans are and where they’re located, current methods of understanding and measuring engagement are missing the answers to two essential questions: (1) Why is a fan motivated? and (2) What triggers the fan’s behavior? Our Innovation Lab research group is developing a new model called Leveraging Engagement, which can be used as a framework when designing media strategy….(More)”

Big Crisis Data: Social Media in Disasters and Time-Critical Situations


Book by Carlos Castillo: “Social media is an invaluable source of time-critical information during a crisis. However, emergency response and humanitarian relief organizations that would like to use this information struggle with an avalanche of social media messages that exceeds human capacity to process. Emergency managers, decision makers, and affected communities can make sense of social media through a combination of machine computation and human compassion – expressed by thousands of digital volunteers who publish, process, and summarize potentially life-saving information. This book brings together computational methods from many disciplines: natural language processing, semantic technologies, data mining, machine learning, network analysis, human-computer interaction, and information visualization, focusing on methods that are commonly used for processing social media messages under time-critical constraints, and offering more than 500 references to in-depth information…(More)”

AI lawyer speeds up legal research


Springwise: “Lawyers have to maintain and recall vast amounts of information in the form of legislation, case law and secondary cases, and they spend up to a fifth of their time on legal research. But an AI app called Ross Intelligence could soon help with that. The program, which is built on IBM’s super-computer Watson, uses natural language processing to answer legal questions in a fraction of the time that it would take a legal assistant.

To begin, legal professionals can ask Ross a question as they would ask a colleague. Then the program reads through the entire body of law and returns a cited answer as well topical readings. Ross also monitors the law constantly to keep the user updated about changes that might affect their case, so they don’t need to sift through the mass of legal news….(More)”

Transparency reports make AI decision-making accountable


Phys.org: “Machine-learning algorithms increasingly make decisions about credit, medical diagnoses, personalized recommendations, advertising and job opportunities, among other things, but exactly how usually remains a mystery. Now, new measurement methods developed by Carnegie Mellon University researchers could provide important insights to this process.

 Was it a person’s age, gender or education level that had the most influence on a decision? Was it a particular combination of factors? CMU’s Quantitative Input Influence (QII) measures can provide the relative weight of each factor in the final decision, said Anupam Datta, associate professor of computer science and electrical and computer engineering.

“Demands for algorithmic transparency are increasing as the use of algorithmic decision-making systems grows and as people realize the potential of these systems to introduce or perpetuate racial or sex discrimination or other social harms,” Datta said.

“Some companies are already beginning to provide transparency reports, but work on the computational foundations for these reports has been limited,” he continued. “Our goal was to develop measures of the degree of influence of each factor considered by a system, which could be used to generate transparency reports.”

These reports might be generated in response to a particular incident—why an individual’s loan application was rejected, or why police targeted an individual for scrutiny or what prompted a particular medical diagnosis or treatment. Or they might be used proactively by an organization to see if an artificial intelligence system is working as desired, or by a regulatory agency to see whether a decision-making system inappropriately discriminated between groups of people….(More)”

Robot Regulators Could Eliminate Human Error


 in the San Francisco Chronicle and Regblog: “Long a fixture of science fiction, artificial intelligence is now part of our daily lives, even if we do not realize it. Through the use of sophisticated machine learning algorithms, for example, computers now work to filter out spam messages automatically from our email. Algorithms also identify us by our photos on Facebook, match us with new friends on online dating sites, and suggest movies to watch on Netflix.

These uses of artificial intelligence hardly seem very troublesome. But should we worry if government agencies start to use machine learning?

Complaints abound even today about the uncaring “bureaucratic machinery” of government. Yet seeing how machine learning is starting to replace jobs in the private sector, we can easily fathom a literal machinery of government in which decisions made by human public servants increasingly become made by machines.

Technologists warn of an impending “singularity,” when artificial intelligence surpasses human intelligence. Entrepreneur Elon Musk cautions that artificial intelligence poses one of our “biggest existential threats.” Renowned physicist Stephen Hawking eerily forecasts that artificial intelligence might even “spell the end of the human race.”

Are we ready for a world of regulation by robot? Such a world is closer than we think—and it could actually be worth welcoming.

Already government agencies rely on machine learning for a variety of routine functions. The Postal Service uses learning algorithms to sort mail, and cities such as Los Angeles use them to time their traffic lights. But while uses like these seem relatively benign, consider that machine learning could also be used to make more consequential decisions. Disability claims might one day be processed automatically with the aid of artificial intelligence. Licenses could be awarded to airplane pilots based on what kinds of safety risks complex algorithms predict each applicant poses.

Learning algorithms are already being explored by the Environmental Protection Agency to help make regulatory decisions about what toxic chemicals to control. Faced with tens of thousands of new chemicals that could potentially be harmful to human health, federal regulators have supported the development of a program to prioritize which of the many chemicals in production should undergo the more in-depth testing. By some estimates, machine learning could save the EPA up to $980,000 per toxic chemical positively identified.

It’s not hard then to imagine a day in which even more regulatory decisions are automated. Researchers have shown that machine learning can lead to better outcomes when determining whether parolees ought to be released or domestic violence orders should be imposed. Could the imposition of regulatory fines one day be determined by a computer instead of a human inspector or judge? Quite possibly so, and this would be a good thing if machine learning could improve accuracy, eliminate bias and prejudice, and reduce human error, all while saving money.

But can we trust a government that bungled the initial rollout of Healthcare.gov to deploy artificial intelligence responsibly? In some circumstances we should….(More)”

The Biggest Hope for Ending Corruption Is Open Public Contracting


Gavin Hayman at the Huffington Post: “This week the British Prime Minister David Cameron is hosting an international anti-corruption summit. The scourge of anonymous shell companies and hidden identities rightly seizes the public’s imagination. We can all picture the suitcases of cash and tropical islands involved. As well as acting on offshore and onshore money laundering havens, world leaders at the summit should also be asking themselves where all this money is being stolen from in the first place.

The answer is mostly from public contracting: government spending through private companies to deliver works, goods and services to citizens. It is technical, dull and universally obscure. But it is the single biggest item of spending by government – amounting to a staggering $9,500,000,000,000 each year. This concentration of money, government discretion, and secrecy makes public contracting so vulnerable to corruption. Data on prosecutions tracked by the OECD Anti-Bribery Convention shows that roughly 60% of bribes were paid to win public contracts.

Corruption in contracting deprives ordinary people of vital goods and services, and sometimes even kills: I was one of many Londoners moved by Ai Wei Wei’s installation that memorialised the names of thousands of children killed in China’s Sichuan earthquake in 2008. Their supposed earthquake-proof schools collapsed on them like tofu.

Beyond corruption, inefficiency and mismanagement of public contracts cost countries billions. Governments just don’t seem to know what they are buying, when, from whom, and whether they got a good price.

This problem can be fixed. But it will require a set of innovations best described as open contracting: using accessible open data and better engagement so that citizens, government and business can follow the money in government contracts from planning to tendering to performance and closure. The coordination required can be hard work but it is achievable: any country can make substantial progress on open contracting with some political leadership. My organisation supports an open data standard and a free global helpdesk to assist governments, civil society, and business in this transition….(More)”

Accountable Algorithms


Paper by Joshua A. Kroll et al: “Many important decisions historically made by people are now made by computers. Algorithms count votes, approve loan and credit card applications, target citizens or neighborhoods for police scrutiny, select taxpayers for an IRS audit, and grant or deny immigration visas.

The accountability mechanisms and legal standards that govern such decision processes have not kept pace with technology. The tools currently available to policymakers, legislators, and courts were developed to oversee human decision-makers and often fail when applied to computers instead: for example, how do you judge the intent of a piece of software? Additional approaches are needed to make automated decision systems — with their potentially incorrect, unjustified or unfair results — accountable and governable. This Article reveals a new technological toolkit to verify that automated decisions comply with key standards of legal fairness.

We challenge the dominant position in the legal literature that transparency will solve these problems. Disclosure of source code is often neither necessary (because of alternative techniques from computer science) nor sufficient (because of the complexity of code) to demonstrate the fairness of a process. Furthermore, transparency may be undesirable, such as when it permits tax cheats or terrorists to game the systems determining audits or security screening.

The central issue is how to assure the interests of citizens, and society as a whole, in making these processes more accountable. This Article argues that technology is creating new opportunities — more subtle and flexible than total transparency — to design decision-making algorithms so that they better align with legal and policy objectives. Doing so will improve not only the current governance of algorithms, but also — in certain cases — the governance of decision-making in general. The implicit (or explicit) biases of human decision-makers can be difficult to find and root out, but we can peer into the “brain” of an algorithm: computational processes and purpose specifications can be declared prior to use and verified afterwards.

The technological tools introduced in this Article apply widely. They can be used in designing decision-making processes from both the private and public sectors, and they can be tailored to verify different characteristics as desired by decision-makers, regulators, or the public. By forcing a more careful consideration of the effects of decision rules, they also engender policy discussions and closer looks at legal standards. As such, these tools have far-reaching implications throughout law and society.

Part I of this Article provides an accessible and concise introduction to foundational computer science concepts that can be used to verify and demonstrate compliance with key standards of legal fairness for automated decisions without revealing key attributes of the decision or the process by which the decision was reached. Part II then describes how these techniques can assure that decisions are made with the key governance attribute of procedural regularity, meaning that decisions are made under an announced set of rules consistently applied in each case. We demonstrate how this approach could be used to redesign and resolve issues with the State Department’s diversity visa lottery. In Part III, we go further and explore how other computational techniques can assure that automated decisions preserve fidelity to substantive legal and policy choices. We show how these tools may be used to assure that certain kinds of unjust discrimination are avoided and that automated decision processes behave in ways that comport with the social or legal standards that govern the decision. We also show how algorithmic decision-making may even complicate existing doctrines of disparate treatment and disparate impact, and we discuss some recent computer science work on detecting and removing discrimination in algorithms, especially in the context of big data and machine learning. And lastly in Part IV, we propose an agenda to further synergistic collaboration between computer science, law and policy to advance the design of automated decision processes for accountability….(More)”