Network architecture for global AI policy


Article by Cameron F. Kerry, Joshua P. Meltzer, Andrea Renda, and Andrew W. Wyckoff: “We see efforts to consolidate international AI governance as premature and ill-suited to respond to the immense, complex, novel, challenges of governing advanced AI, and the current diverse and decentralized efforts as beneficial and the best fit for this complex and rapidly developing technology.

Exploring the vast terra incognita of AI, realizing its opportunities, and managing its risks requires governance that can adapt and respond rapidly to AI risks as they emerge, develop deep understanding of the technology and its implications, and mobilize diverse resources and initiatives to address the growing global demand for access to AI. No one government or body will have the capacity to take on these challenges without building multiple coalitions and working closely with experts and institutions in industry, philanthropy, civil society, and the academy.

A distributed network of networks can more effectively address the challenges and opportunities of AI governance than a centralized system. Like the architecture of the interconnected information technology systems on which AI depends, such a decentralized system can bring to bear redundancy, resiliency, and diversity by channeling the functions of AI governance toward the most timely and effective pathways in iterative and diversified processes, providing agility against setbacks or failures at any single point. These multiple centers of effort can harness the benefit of network effects and parallel processing.

We explore this model of distributed and iterative AI governance below…(More)”.

Call to make tech firms report data centre energy use as AI booms


Article by Sandra Laville: “Tech companies should be required by law to report the energy and water consumption for their data centres, as the boom in AI risks causing irreparable damage to the environment, experts have said.

AI is growing at a rate unparalleled by other energy systems, bringing heightened environmental risk, a report by the National Engineering Policy Centre (NEPC) said.

The report calls for the UK government to make tech companies submit mandatory reports on their energy and water consumption and carbon emissions in order to set conditions in which data centres are designed to use fewer vital resources…(More)”.

The new politics of AI


Report by the IPPR: AI is fundamentally different from other technologies – it is set to unleash a vast number of highly sophisticated ‘artificial agents’ into the economy. AI systems that can take actions and make decisions are not just tools – they are actors. This can be a good thing. But it requires a novel type of policymaking and politics. Merely accelerating AI deployment and hoping it will deliver public value will likely be insufficient.

In this briefing, we outline how the summit constitutes the first event of a new era of AI policymaking that links AI policy to delivering public value. We argue that AI needs to be directed towards societies’ goals, via ‘mission-based policies’….(More)”.

Enhancing Access to and Sharing of Data in the Age of Artificial Intelligence



OECD Report: “Artificial intelligence (AI) is transforming economies and societies, but its full potential is hindered by poor access to quality data and models. Based on comprehensive country examples, the OECD report “Enhancing Access to and Sharing of Data in the Age of AI” highlights how governments can enhance access to and sharing of data and certain AI models, while ensuring privacy and other rights and interests such as intellectual property rights. It highlights the OECD Recommendation on Enhancing Access to and Sharing of Data, which provides principles to balance openness while ensuring effective legal, technical and organisational safeguards. This policy brief highlights the key findings of the report and their relevance for stakeholders seeking to promote trustworthy AI through better policies for data and AI models that drive trust, investment, innovation, and well-being….(More)”

Tech tycoons have got the economics of AI wrong


The Economist: “…The Jevons paradox—the idea that efficiency leads to more use of a resource, not less—has in recent days provided comfort to Silicon Valley titans worried about the impact of DeepSeek, the maker of a cheap and efficient Chinese chatbot, which threatens the more powerful but energy-guzzling American varieties. Satya Nadella, the boss of Microsoft, posted on X, a social-media platform, that “Jevons paradox strikes again! As AI gets more efficient and accessible, we will see its use skyrocket, turning it into a commodity we just can’t get enough of,” along with a link to the Wikipedia page for the economic principle. Under this logic, DeepSeek’s progress will mean more demand for data centres, Nvidia chips and even the nuclear reactors that the hyperscalers were, prior to the unveiling of DeepSeek, paying to restart. Nothing to worry about if the price falls, Microsoft can make it up on volume.

The logic, however self-serving, has a ring of truth to it. Jevons’s paradox is real and observable in a range of other markets. Consider the example of lighting. William Nordhaus, a Nobel-prizewinning economist, has calculated that a Babylonian oil lamp, powered by sesame oil, produced about 0.06 lumens of light per watt of energy. That compares with up to 110 lumens for a modern light-emitting diode. The world has not responded to this dramatic improvement in energy efficiency by enjoying the same amount of light as a Babylonian at lower cost. Instead, it has banished darkness completely, whether through more bedroom lamps than could have been imagined in ancient Mesopotamia or the Las Vegas sphere, which provides passersby with the chance to see a 112-metre-tall incandescent emoji. Urban light is now so cheap and so abundant that many consider it to be a pollutant.

Likewise, more efficient chatbots could mean that AI finds new uses (some no doubt similarly obnoxious). The ability of DeepSeek’s model to perform about as well as more compute-hungry American AI shows that data centres are more productive than previously thought, rather than less. Expect, the logic goes, more investment in data centres and so on than you did before.

Although this idea should provide tech tycoons with some solace, they still ought to worry. The Jevons paradox is a form of a broader phenomenon known as “rebound effects”. These are typically not large enough to fully offset savings from improved efficiency….Basing the bull case for AI on the Jevons paradox is, therefore, a bet not on the efficiency of the technology but on the level of demand. If adoption is being held back by price then efficiency gains will indeed lead to greater use. If technological progress raises expectations rather than reduces costs, as is typical in health care, then chatbots will make up an ever larger proportion of spending. At the moment, that looks unlikely. America’s Census Bureau finds that only 5% of American firms currently use AI and 7% have plans to adopt it in the future. Many others find the tech difficult to use or irrelevant to their line of business…(More)”.

Unlocking AI’s potential for the public sector


Article by Ruth Kelly: “…Government needs to work on its digital foundations. The extent of legacy IT systems across government is huge. Many were designed and built for a previous business era, and still rely on paper-based processes. Historic neglect and a lack of asset maintenance has added to the difficulty. Because many systems are not compatible, sharing data across systems requires manual extraction which is risky and costly. All this adds to problems with data quality. Government suffers from data which is incomplete, inconsistent, inaccessible, difficult to process and not easily shareable. A lack of common data models, both between and within government departments, makes it difficult and costly to combine different sources of data, and significant manual effort is required to make data usable. Some departments have told us that they spend 60% to 80% of their time on cleaning data when carrying out analysis.

Why is this an issue for AI? Large volumes of good-quality data are important for training, testing and deploying AI models. Poor data leads to poor outcomes, especially where it involves personal data. Access to good-quality data was identified as a barrier to implementing AI by 62% of the 87 government bodies responding to our survey. Simple productivity improvements that provide integration with routine administration (for example summarising documents) is already possible, but integration with big, established legacy IT is a whole other long-term endeavour. Layering new technology on top of existing systems, and reusing poor-quality and aging data, carries the risk of magnifying problems and further embedding reliance on legacy systems…(More)”

AI Commons: nourishing alternatives to Big Tech monoculture


Report by Joana Varon, Sasha Costanza-Chock, Mariana Tamari, Berhan Taye, and Vanessa Koetz: “‘Artificial Intelligence’ (AI) has become a buzzword all around the globe, with tech companies, research institutions, and governments all vying to define and shape its future. How can we escape the current context of AI development where certain power forces are pushing for models that, ultimately, automate inequalities and threaten socio-enviromental diversities? What if we could redefine AI? What if we could shift its production from a capitalist model to a more disruptive, inclusive, and decentralized one? Can we imagine and foster an AI Commons ecosystem that challenges the current dominant neoliberal logic of an AI arms race? An ecosystem encompassing researchers, developers, and activists who are thinking about AI from decolonial, transfeminist, antiracist, indigenous, decentralized, post-capitalist and/or socio-environmental justice perspectives?

This fieldscan research, commissioned by One Project and conducted by Coding Rights, aims to understand the (possibly) emerging “AI Common” ecosystem. Focused on key entities (organizations, cooperatives and collectives, networks, companies, projects, and others) from Africa, the Americas, and Europe advancing alternative possible AI futures, the authors identify 234 entities that are advancing the AI Commons ecosystem. The report finds powerful communities of practice, groups, and organizations producing nuanced criticism of the Big Tech-driven AI development ecosystem and, most importantly, imagining, developing, and, at times, deploying an alternative AI technology that’s informed and guided by the principles of decoloniality, feminism, antiracist, and post-capitalist AI systems…(More)”.

The Impact of Artificial Intelligence on Societies


Book edited by Christian Montag and Raian Ali: “This book presents a recent framework proposed to understand how attitudes towards artificial intelligence are formed. It describes how the interplay between different variables, such as the modality of AI interaction, the user personality and culture, the type of AI applications (e.g. in the realm of education, medicine, transportation, among others), and the transparency and explainability of AI systems contributes to understand how user’s acceptance or a negative attitude towards AI develops. Gathering chapters from leading researchers with different backgrounds, this book offers a timely snapshot on factors that will be influencing the impact of artificial intelligence on societies…(More)”.

Local Government: Artificial intelligence use cases


Repository by the (UK) Local Government Association: “Building on the findings of our recent AI survey, which highlighted the need for practical examples, this bank showcases the diverse ways local authorities are leveraging AI. 

Within this collection, you’ll discover a spectrum of AI adoption, ranging from utilising AI assistants to streamline back-office tasks to pioneering the implementation of bespoke Large Language Models (LLMs). These real-world use cases exemplify the innovative spirit driving advancements in local government service delivery. 

Whether your council is at the outset of its AI exploration or seeking to expand its existing capabilities, this bank offers a wealth of valuable insights and best practices to support your organisation’s AI journey…(More)”.

Developing a public-interest training commons of books


Article by Authors Alliance: “…is pleased to announce a new project, supported by the Mellon Foundation, to develop an actionable plan for a public-interest book training commons for artificial intelligence. Northeastern University Library will be supporting this project and helping to coordinate its progress.

Access to books will play an essential role in how artificial intelligence develops. AI’s Large Language Models (LLMs) have a voracious appetite for text, and there are good reasons to think that these data sets should include books and lots of them. Over the last 500 years, human authors have written over 129 million books. These volumes, preserved for future generations in some of our most treasured research libraries, are perhaps the best and most sophisticated reflection of all human thinking. Their high editorial quality, breadth, and diversity of content, as well as the unique way they employ long-form narratives to communicate sophisticated and nuanced arguments and ideas make them ideal training data sources for AI.

These collections and the text embedded in them should be made available under ethical and fair rules as the raw material that will enable the computationally intense analysis needed to inform new AI models, algorithms, and applications imagined by a wide range of organizations and individuals for the benefit of humanity…(More)”