Building a Responsible Humanitarian Approach: The ICRC’s policy on Artificial Intelligence


Policy by the ICRC: “…is anchored in a purely humanitarian approach driven by our mandate and Fundamental Principles. It is meant to help ICRC staff learn about AI and safely explore its humanitarian potential.

This policy is the result of a collaborative and multidisciplinary approach that leveraged the ICRC’s humanitarian and operational expertise, existing international AI standards, and the guidance and feedback of external experts.

Given the constantly evolving nature of AI, this document cannot possibly address all the questions and challenges that will arise in the future, but we hope that it provides a solid basis and framework to ensure we take a responsible and human-centred approach when using AI in support of our mission, in line with our 2024–2027 Institutional Strategy…(More)”.

Shifting Patterns of Social Interaction: Exploring the Social Life of Urban Spaces Through A.I.


Paper by Arianna Salazar-Miranda, et al: “We analyze changes in pedestrian behavior over a 30-year period in four urban public spaces located in New York, Boston, and Philadelphia. Building on William Whyte’s observational work from 1980, where he manually recorded pedestrian behaviors, we employ computer vision and deep learning techniques to examine video footage from 1979-80 and 2008-10. Our analysis measures changes in walking speed, lingering behavior, group sizes, and group formation. We find that the average walking speed has increased by 15%, while the time spent lingering in these spaces has halved across all locations. Although the percentage of pedestrians walking alone remained relatively stable (from 67% to 68%), the frequency of group encounters declined, indicating fewer interactions in public spaces. This shift suggests that urban residents increasingly view streets as thoroughfares rather than as social spaces, which has important implications for the role of public spaces in fostering social engagement…(More)”.

Courts in Buenos Aires are using ChatGPT to draft rulings


Article by Victoria Mendizabal: “In May, the Public Prosecution Service of the City of Buenos Aires began using generative AI to predict rulings for some public employment cases related to salary demands.

Since then, justice employees at the office for contentious administrative and tax matters of the city of Buenos Aires have uploaded case documents into ChatGPT, which analyzes patterns, offers a preliminary classification from a catalog of templates, and drafts a decision. So far, ChatGPT has been used for 20 legal sentences.

The use of generative AI has cut down the time it takes to draft a sentence from an hour to about 10 minutes, according to recent studies conducted by the office.

“We, as professionals, are not the main characters anymore. We have become editors,” Juan Corvalán, deputy attorney general in contentious administrative and tax matters, told Rest of World.

The introduction of generative AI tools has improved efficiency at the office, but it has also prompted concerns within the judiciary and among independent legal experts about possiblebiases, the treatment of personal data, and the emergence of hallucinations. Similar concerns have echoed beyond Argentina’s borders.

“We, as professionals, are not the main characters anymore. We have become editors.”

“Any inconsistent use, such as sharing sensitive information, could have a considerable legal cost,” Lucas Barreiro, a lawyer specializing in personal data protection and a member of Privaia, a civil association dedicated to the defense of human rights in the digital era, told Rest of World.

Judges in the U.S. have voiced skepticism about the use of generative AI in the courts, with Manhattan Federal Judge Edgardo Ramos saying earlier this year that “ChatGPT has been shown to be an unreliable resource.” In Colombia and the Netherlands, the use of ChatGPT by judges was criticized by local experts. But not everyone is concerned: A court of appeals judge in the U.K. who used ChatGPT to write part of a judgment said that it was “jolly useful.”

For Corvalán, the move to generative AI is the culmination of a years-long transformation within the City of Buenos Aires’ attorney general’s office.In 2017, Corvalán put together a group of developers to train an AI-powered system called PROMETEA, which was intended to automate judicial tasks and expedite case proceedings. The team used more than 300,000 rulings and case files related to housing protection, public employment bonuses, enforcement of unpaid fines, and denial of cab licenses to individuals with criminal records…(More)”.

Artificial Intelligence and the Future of Work


Report by the National Academies: “AI technology is at an inflection point: a surge of technological progress has driven the rapid development and adoption of generative AI systems, such as ChatGPT, which are capable of generating text, images, or other content based on user requests.

This technical progress is likely to continue in coming years, with the potential to complement or replace human labor in certain tasks and reshape job markets. However, it is difficult to predict exactly which new AI capabilities might emerge, and when these advances might occur.

This National Academies’ report evaluates recent advances in AI technology and their implications for economic productivity, job stability, and income inequality, identifying research opportunities and data needs to equip workers and policymakers to flexibly respond to AI developments…(More)”

Using generative AI for crisis foresight


Article by Antonin Kenens and Josip Ivanovic: “What if the next time you discuss a complex future and its potential crises, it could be transformed from a typical meeting into an immersive experience? That’s exactly what we did at a recent strategy meeting of UNDP’s Crisis Bureau and Bureau for Policy and Programme Support.  

In an environment where workshops and meetings can often feel monotonous, we aimed to break the mold. By using AI-generated videos, we brought our discussion to life, reflecting the realities of developing nations and immersing participants in the critical issues affecting our region.  In today’s rapidly changing world, the ability to anticipate and prepare for potential crises is more crucial than ever. Crisis foresight involves identifying and analyzing possible future crises to develop strategies that can mitigate their impact. This proactive approach, highlighted multiple times in the pact for the future, is essential for effective governance and sustainable development in Europe and Central Asia and the rest of the world.

graphical user interface
Visualization of the consequences of pollution in Joraland.

Our idea behind creating AI-generated videos was to provide a vivid, immersive experience that would engage viewers and stimulate active participation by sharing their reflections on the challenges and opportunities in developing countries. We presented fictional yet relatable scenarios to gather the participants of the meeting around a common view and create a sense of urgency and importance around UNDP’s strategic priorities and initiatives. 

This approach not only captured attention but also sparked deeper engagement and thought-provoking conversations…(More)”.

The Emergent Landscape of Data Commons: A Brief Survey and Comparison of Existing Initiatives


Article by Stefaan G. Verhulst and Hannah Chafetz: With the increased attention on the need for data to advance AI, data commons initiatives around the world are redefining how data can be accessed, and re-used for societal benefit. These initiatives focus on generating access to data from various sources for a public purpose and are governed by communities themselves. While diverse in focus–from health and mobility to language and environmental data–data commons are united by a common goal: democratizing access to data to fuel innovation and tackle global challenges.

This includes innovation in the context of artificial intelligence (AI). Data commons are providing the framework to make pools of diverse data available in machine understandable formats for responsible AI development and deployment. By providing access to high quality data sources with open licensing, data commons can help increase the quantity of training data in a less exploitative fashion, minimize AI providers’ reliance on data extracted across the internet without an open license, and increase the quality of the AI output (while reducing mis-information).

Over the last few months, the Open Data Policy Lab (a collaboration between The GovLab and Microsoft) has conducted various research initiatives to explore these topics further and understand:

(1) how the concept of a data commons is changing in the context of artificial intelligence, and

(2) current efforts to advance the next generation of data commons.

In what follows we provide a summary of our findings thus far. We hope it inspires more data commons use cases for responsible AI innovation in the public’s interest…(More)”.

The Death of Search


Article by Matteo Wong: “For nearly two years, the world’s biggest tech companies have said that AI will transform the web, your life, and the world. But first, they are remaking the humble search engine.

Chatbots and search, in theory, are a perfect match. A standard Google search interprets a query and pulls up relevant results; tech companies have spent tens or hundreds of millions of dollars engineering chatbots that interpret human inputs, synthesize information, and provide fluent, useful responses. No more keyword refining or scouring Wikipedia—ChatGPT will do it all. Search is an appealing target, too: Shaping how people navigate the internet is tantamount to shaping the internet itself.

Months of prophesying about generative AI have now culminated, almost all at once, in what may be the clearest glimpse yet into the internet’s future. After a series of limited releases and product demos, mired with various setbacks and embarrassing errors, tech companies are debuting AI-powered search engines as fully realized, all-inclusive products. Last Monday, Google announced that it would launch its AI Overviews in more than 100 new countries; that feature will now reach more than 1 billion users a month. Days later, OpenAI announced a new search function in ChatGPT, available to paid users for now and soon opening to the public. The same afternoon, the AI-search start-up Perplexity shared instructions for making its “answer engine” the default search tool in your web browser.

For the past week, I have been using these products in a variety of ways: to research articles, follow the election, and run everyday search queries. In turn I have scried, as best I can, into the future of how billions of people will access, relate to, and synthesize information. What I’ve learned is that these products are at once unexpectedly convenient, frustrating, and weird. These tools’ current iterations surprised and, at times, impressed me, yet even when they work perfectly, I’m not convinced that AI search is a wise endeavor…(More)”.

Who Is Responsible for AI Copyright Infringement?


Article by Michael P. Goodyear: “Twenty-one-year-old college student Shane hopes to write a song for his boyfriend. In the past, Shane would have had to wait for inspiration to strike, but now he can use generative artificial intelligence to get a head start. Shane decides to use Anthropic’s AI chat system, Claude, to write the lyrics. Claude dutifully complies and creates the words to a love song. Shane, happy with the result, adds notes, rhythm, tempo, and dynamics. He sings the song and his boyfriend loves it. Shane even decides to post a recording to YouTube, where it garners 100,000 views.

But Shane did not realize that this song’s lyrics are similar to those of “Love Story,” Taylor Swift’s hit 2008 song. Shane must now contend with copyright law, which protects original creative expression such as music. Copyright grants the rights owner the exclusive rights to reproduce, perform, and create derivatives of the copyrighted work, among other things. If others take such actions without permission, they can be liable for damages up to $150,000. So Shane could be on the hook for tens of thousands of dollars for copying Swift’s song.

Copyright law has surged into the news in the past few years as one of the most important legal challenges for generative AI tools like Claude—not for the output of these tools but for how they are trained. Over two dozen pending court cases grapple with the question of whether training generative AI systems on copyrighted works without compensating or getting permission from the creators is lawful or not. Answers to this question will shape a burgeoning AI industry that is predicted to be worth $1.3 trillion by 2032.

Yet there is another important question that few have asked: Who should be liable when a generative AI system creates a copyright-infringing output? Should the user be on the hook?…(More)”

Assessing potential future artificial intelligence risks, benefits and policy imperatives


OECD Report: “The swift evolution of AI technologies calls for policymakers to consider and proactively manage AI-driven change. The OECD’s Expert Group on AI Futures was established to help meet this need and anticipate AI developments and their potential impacts. Informed by insights from the Expert Group, this report distils research and expert insights on prospective AI benefits, risks and policy imperatives. It identifies ten priority benefits, such as accelerated scientific progress, productivity gains and better sense-making and forecasting. It discusses ten priority risks, such as facilitation of increasingly sophisticated cyberattacks; manipulation, disinformation, fraud and resulting harms to democracy; concentration of power; incidents in critical systems and exacerbated inequality and poverty. Finally, it points to ten policy priorities, including establishing clearer liability rules, drawing AI “red lines”, investing in AI safety and ensuring adequate risk management procedures. The report reviews existing public policy and governance efforts and remaining gaps…(More)”.

Human-AI coevolution


Paper by Dino Pedreschi et al: “Human-AI coevolution, defined as a process in which humans and AI algorithms continuously influence each other, increasingly characterises our society, but is understudied in artificial intelligence and complexity science literature. Recommender systems and assistants play a prominent role in human-AI coevolution, as they permeate many facets of daily life and influence human choices through online platforms. The interaction between users and AI results in a potentially endless feedback loop, wherein users’ choices generate data to train AI models, which, in turn, shape subsequent user preferences. This human-AI feedback loop has peculiar characteristics compared to traditional human-machine interaction and gives rise to complex and often “unintended” systemic outcomes. This paper introduces human-AI coevolution as the cornerstone for a new field of study at the intersection between AI and complexity science focused on the theoretical, empirical, and mathematical investigation of the human-AI feedback loop. In doing so, we: (i) outline the pros and cons of existing methodologies and highlight shortcomings and potential ways for capturing feedback loop mechanisms; (ii) propose a reflection at the intersection between complexity science, AI and society; (iii) provide real-world examples for different human-AI ecosystems; and (iv) illustrate challenges to the creation of such a field of study, conceptualising them at increasing levels of abstraction, i.e., scientific, legal and socio-political…(More)”.