The personification of big data


Paper by Stevenson, Phillip Douglas and Mattson, Christopher Andrew: “Organizations all over the world, both national and international, gather demographic data so that the progress of nations and peoples can be tracked. This data is often made available to the public in the form of aggregated national level data or individual responses (microdata). Product designers likewise conduct surveys to better understand their customer and create personas. Personas are archetypes of the individuals who will use, maintain, sell or otherwise be affected by the products created by designers. Personas help designers better understand the person the product is designed for. Unfortunately, the process of collecting customer information and creating personas is often a slow and expensive process.

In this paper, we introduce a new method of creating personas, leveraging publicly available databanks of both aggregated national level and information on individuals in the population. A computational persona generator is introduced that creates a population of personas that mirrors a real population in terms of size and statistics. Realistic individual personas are filtered from this population for use in product development…(More)”.

Responding to Some Challenges Posed by the Reidentification of Anonymized Personal Data


Paper by Herman T. Tavani and Frances S. Grodzinsky: “In this paper, we examine a cluster of ethical controversies generated by the reidentification of anonymized personal data in the context of big data analytics, with particular attention to the implications for personal privacy. Our paper is organized into two main parts. Part One examines some ethical problems involving re-identification of personally identifiable information (PII) in large data sets. Part Two begins with a brief description of Moor and Weckert’s Dynamic Ethics (DE) and Nissenbaum’s Contextual Integrity (CI) Frameworks. We then investigate whether these frameworks, used together, can provide us with a more robust scheme for analyzing privacy concerns that arise in the re-identification process (as well as within the larger context of big data analytics). This paper does not specifically address re-identification-related privacy concerns that arise in the context of the European Union’s General Data Protection Regulation (GDPR). Instead, we examine those issues in a separate work….(More)”.

“Anonymous” Data Won’t Protect Your Identity


Sophie Bushwick at Scientific American: “The world produces roughly 2.5 quintillion bytes of digital data per day, adding to a sea of information that includes intimate details about many individuals’ health and habits. To protect privacy, data brokers must anonymize such records before sharing them with researchers and marketers. But a new study finds it is relatively easy to reidentify a person from a supposedly anonymized data set—even when that set is incomplete.

Massive data repositories can reveal trends that teach medical researchers about disease, demonstrate issues such as the effects of income inequality, coach artificial intelligence into humanlike behavior and, of course, aim advertising more efficiently. To shield people who—wittingly or not—contribute personal information to these digital storehouses, most brokers send their data through a process of deidentification. This procedure involves removing obvious markers, including names and social security numbers, and sometimes taking other precautions, such as introducing random “noise” data to the collection or replacing specific details with general ones (for example, swapping a birth date of “March 7, 1990” for “January–April 1990”). The brokers then release or sell a portion of this information.

“Data anonymization is basically how, for the past 25 years, we’ve been using data for statistical purposes and research while preserving people’s privacy,” says Yves-Alexandre de Montjoye, an assistant professor of computational privacy at Imperial College London and co-author of the new study, published this week in Nature Communications.  Many commonly used anonymization techniques, however, originated in the 1990s, before the Internet’s rapid development made it possible to collect such an enormous amount of detail about things such as an individual’s health, finances, and shopping and browsing habits. This discrepancy has made it relatively easy to connect an anonymous line of data to a specific person: if a private detective is searching for someone in New York City and knows the subject is male, is 30 to 35 years old and has diabetes, the sleuth would not be able to deduce the man’s name—but could likely do so quite easily if he or she also knows the target’s birthday, number of children, zip code, employer and car model….(More)”

The value of data in Canada: Experimental estimates


Statistics Canada: “As data and information take on a far more prominent role in Canada and, indeed, all over the world, data, databases and data science have become a staple of modern life. When the electricity goes out, Canadians are as much in search of their data feed as they are food and heat. Consumers are using more and more data that is embodied in the products they buy, whether those products are music, reading material, cars and other appliances, or a wide range of other goods and services. Manufacturers, merchants and other businesses depend increasingly on the collection, processing and analysis of data to make their production processes more efficient and to drive their marketing strategies.

The increasing use of and investment in all things data is driving economic growth, changing the employment landscape and reshaping how and from where we buy and sell goods. Yet the rapid rise in the use and importance of data is not well measured in the existing statistical system. Given the ‘lack of data on data’, Statistics Canada has initiated new research to produce a first set of estimates of the value of data, databases and data science. The development of these estimates benefited from collaboration with the Bureau of Economic Analysis in the United States and the Organisation for Economic Co-operation and Development.

In 2018, Canadian investment in data, databases and data science was estimated to be as high as $40 billion. This was greater than the annual investment in industrial machinery, transportation equipment, and research and development and represented approximately 12% of total non-residential investment in 2018….

Statistics Canada recently released a conceptual framework outlining how one might measure the economic value of data, databases and data science. Thanks to this new framework, the growing role of data in Canada can be measured through time. This framework is described in a paper that was released in The Daily on June 24, 2019 entitled “Measuring investments in data, databases and data science: Conceptual framework.” That paper describes the concept of an ‘information chain’ in which data are derived from everyday observations, databases are constructed from data, and data science creates new knowledge by analyzing the contents of databases….(More)”.

How we can place a value on health care data


Report by E&Y: “Unlocking the power of health care data to fuel innovation in medical research and improve patient care is at the heart of today’s health care revolution. When curated or consolidated into a single longitudinal dataset, patient-level records will trace a complete story of a patient’s demographics, health, wellness, diagnosis, treatments, medical procedures and outcomes. Health care providers need to recognize patient data for what it is: a valuable intangible asset desired by multiple stakeholders, a treasure trove of information.

Among the universe of providers holding significant data assets, the United Kingdom’s National Health Service (NHS) is the single largest integrated health care provider in the world. Its patient records cover the entire UK population from birth to death.

We estimate that the 55 million patient records held by the NHS today may have an indicative market value of several billion pounds to a commercial organization. We estimate also that the value of the curated NHS dataset could be as much as £5bn per annum and deliver around £4.6bn of benefit to patients per annum, in potential operational savings for the NHS, enhanced patient outcomes and generation of wider economic benefits to the UK….(More)”.

The Hidden Costs of Automated Thinking


Jonathan Zittrain in The New Yorker: “Like many medications, the wakefulness drug modafinil, which is marketed under the trade name Provigil, comes with a small, tightly folded paper pamphlet. For the most part, its contents—lists of instructions and precautions, a diagram of the drug’s molecular structure—make for anodyne reading. The subsection called “Mechanism of Action,” however, contains a sentence that might induce sleeplessness by itself: “The mechanism(s) through which modafinil promotes wakefulness is unknown.”

Provigil isn’t uniquely mysterious. Many drugs receive regulatory approval, and are widely prescribed, even though no one knows exactly how they work. This mystery is built into the process of drug discovery, which often proceeds by trial and error. Each year, any number of new substances are tested in cultured cells or animals; the best and safest of those are tried out in people. In some cases, the success of a drug promptly inspires new research that ends up explaining how it works—but not always. Aspirin was discovered in 1897, and yet no one convincingly explained how it worked until 1995. The same phenomenon exists elsewhere in medicine. Deep-brain stimulation involves the implantation of electrodes in the brains of people who suffer from specific movement disorders, such as Parkinson’s disease; it’s been in widespread use for more than twenty years, and some think it should be employed for other purposes, including general cognitive enhancement. No one can say how it works.

This approach to discovery—answers first, explanations later—accrues what I call intellectual debt. It’s possible to discover what works without knowing why it works, and then to put that insight to use immediately, assuming that the underlying mechanism will be figured out later. In some cases, we pay off this intellectual debt quickly. But, in others, we let it compound, relying, for decades, on knowledge that’s not fully known.

In the past, intellectual debt has been confined to a few areas amenable to trial-and-error discovery, such as medicine. But that may be changing, as new techniques in artificial intelligence—specifically, machine learning—increase our collective intellectual credit line. Machine-learning systems work by identifying patterns in oceans of data. Using those patterns, they hazard answers to fuzzy, open-ended questions. Provide a neural network with labelled pictures of cats and other, non-feline objects, and it will learn to distinguish cats from everything else; give it access to medical records, and it can attempt to predict a new hospital patient’s likelihood of dying. And yet, most machine-learning systems don’t uncover causal mechanisms. They are statistical-correlation engines. They can’t explain why they think some patients are more likely to die, because they don’t “think” in any colloquial sense of the word—they only answer. As we begin to integrate their insights into our lives, we will, collectively, begin to rack up more and more intellectual debt….(More)”.

Artificial Intelligence and Law: An Overview


Paper by Harry Surden: “Much has been written recently about artificial intelligence (AI) and law. But what is AI, and what is its relation to the practice and administration of law? This article addresses those questions by providing a high-level overview of AI and its use within law. The discussion aims to be nuanced but also understandable to those without a technical background. To that end, I first discuss AI generally. I then turn to AI and how it is being used by lawyers in the practice of law, people and companies who are governed by the law, and government officials who administer the law. A key motivation in writing this article is to provide a realistic, demystified view of AI that is rooted in the actual capabilities of the technology. This is meant to contrast with discussions about AI and law that are decidedly futurist in nature…(More)”.

Law as Data: Computation, Text, and the Future of Legal Analysis


Book edited by Michael A. Livermore and Daniel N. Rockmore: “In recent years, the digitization of legal texts, combined with developments in the fields of statistics, computer science, and data analytics, have opened entirely new approaches to the study of law. This volume explores the new field of computational legal analysis, an approach marked by its use of legal texts as data. The emphasis herein is work that pushes methodological boundaries, either by using new tools to study longstanding questions within legal studies or by identifying new questions in response to developments in data availability and analysis.

By using the text and underlying data of legal documents as the direct objects of quantitative statistical analysis, Law as Data introduces the legal world to the broad range of computational tools already proving themselves relevant to law scholarship and practice, and highlights the early steps in what promises to be an exciting new approach to studying the law….(More)”.

The plan to mine the world’s research papers


Priyanka Pulla in Nature: “Carl Malamud is on a crusade to liberate information locked up behind paywalls — and his campaigns have scored many victories. He has spent decades publishing copyrighted legal documents, from building codes to court records, and then arguing that such texts represent public-domain law that ought to be available to any citizen online. Sometimes, he has won those arguments in court. Now, the 60-year-old American technologist is turning his sights on a new objective: freeing paywalled scientific literature. And he thinks he has a legal way to do it.

Over the past year, Malamud has — without asking publishers — teamed up with Indian researchers to build a gigantic store of text and images extracted from 73 million journal articles dating from 1847 up to the present day. The cache, which is still being created, will be kept on a 576-terabyte storage facility at Jawaharlal Nehru University (JNU) in New Delhi. “This is not every journal article ever written, but it’s a lot,” Malamud says. It’s comparable to the size of the core collection in the Web of Science database, for instance. Malamud and his JNU collaborator, bioinformatician Andrew Lynn, call their facility the JNU data depot.

No one will be allowed to read or download work from the repository, because that would breach publishers’ copyright. Instead, Malamud envisages, researchers could crawl over its text and data with computer software, scanning through the world’s scientific literature to pull out insights without actually reading the text.

The unprecedented project is generating much excitement because it could, for the first time, open up vast swathes of the paywalled literature for easy computerized analysis. Dozens of research groups already mine papers to build databases of genes and chemicals, map associations between proteins and diseases, and generate useful scientific hypotheses. But publishers control — and often limit — the speed and scope of such projects, which typically confine themselves to abstracts, not full text. Researchers in India, the United States and the United Kingdom are already making plans to use the JNU store instead. Malamud and Lynn have held workshops at Indian government laboratories and universities to explain the idea. “We bring in professors and explain what we are doing. They get all excited and they say, ‘Oh gosh, this is wonderful’,” says Malamud.

But the depot’s legal status isn’t yet clear. Malamud, who contacted several intellectual-property (IP) lawyers before starting work on the depot, hopes to avoid a lawsuit. “Our position is that what we are doing is perfectly legal,” he says. For the moment, he is proceeding with caution: the JNU data depot is air-gapped, meaning that no one can access it from the Internet. Users have to physically visit the facility, and only researchers who want to mine for non-commercial purposes are currently allowed in. Malamud says his team does plan to allow remote access in the future. “The hope is to do this slowly and deliberately. We are not throwing this open right away,” he says….(More)”.

What Restaurant Reviews Reveal About Cities


Linda Poon at CityLab: “Online review sites can tell you a lot about a city’s restaurant scene, and they can reveal a lot about the city itself, too.

Researchers at MIT recently found that information about restaurants gathered from popular review sites can be used to uncover a number of socioeconomic factors of a neighborhood, including its employment rates and demographic profiles of the people who live, work, and travel there.

A report published last week in the Proceedings of the National Academy of Sciences explains how the researchers used information found on Dianping—a Yelp-like site in China—to find information that might usually be gleaned from an official government census. The model could prove especially useful for gathering information about cities that don’t have that kind of reliable or up-to-date government data, especially in developing countries with limited resources to conduct regular surveys….

Zheng and her colleagues tested out their machine-learning model using restaurant data from nine Chinese cities of various sizes—from crowded ones like Beijing, with a population of more than 10 million, to smaller ones like Baoding, a city of fewer than 3 million people.

They pulled data from 630,000 restaurants listed on Dianping, including each business’s location, menu prices, opening day, and customer ratings. Then they ran it through a machine-learning model with official census data and with anonymous location and spending data gathered from cell phones and bank cards. By comparing the information, they were able to determine where the restaurant data reflected the other data they had about neighborhoods’ characteristics.

They found that the local restaurant scene can predict, with 95 percent accuracy, variations in a neighborhood’s daytime and nighttime populations, which are measured using mobile phone data. They can also predict, with 90 and 93 percent accuracy, respectively, the number of businesses and the volume of consumer consumption. The type of cuisines offered and kind of eateries available (coffeeshop vs. traditional teahouses, for example), can also predict the proportion of immigrants or age and income breakdown of residents. The predictions are more accurate for neighborhoods near urban centers as opposed to those near suburbs, and for smaller cities, where neighborhoods don’t vary as widely as those in bigger metropolises….(More)”.