How Technology Could Revolutionize Refugee Resettlement


Krishnadev Calamur in The Atlantic: “… For nearly 70 years, the process of interviewing, allocating, and accepting refugees has gone largely unchanged. In 1951, 145 countries came together in Geneva, Switzerland, to sign the Refugee Convention, the pact that defines who is a refugee, what refugees’ rights are, and what legal obligations states have to protect them.

This process was born of the idealism of the postwar years—an attempt to make certain that those fleeing war or persecution could find safety so that horrific moments in history, such as the Holocaust, didn’t recur. The pact may have been far from perfect, but in successive years, it was a lifeline to Afghans, Bosnians, Kurds, and others displaced by conflict.

The world is a much different place now, though. The rise of populism has brought with it a concomitant hostility toward immigrants in general and refugees in particular. Last October, a gunman who had previously posted anti-Semitic messages online against HIAS killed 11 worshippers in a Pittsburgh synagogue. Many of the policy arguments over resettlement have shifted focus from humanitarian relief to security threats and cost. The Trump administration has drastically cut the number of refugees the United States accepts, and large parts of Europe are following suit.

If it works, Annie could change that dynamic. Developed at Worcester Polytechnic Institute in Massachusetts, Lund University in Sweden, and the University of Oxford in Britain, the software uses what’s known as a matching algorithm to allocate refugees with no ties to the United States to their new homes. (Refugees with ties to the United States are resettled in places where they have family or community support; software isn’t involved in the process.)

Annie’s algorithm is based on a machine learning model in which a computer is fed huge piles of data from past placements, so that the program can refine its future recommendations. The system examines a series of variables—physical ailments, age, levels of education and languages spoken, for example—related to each refugee case. In other words, the software uses previous outcomes and current constraints to recommend where a refugee is most likely to succeed. Every city where HIAS has an office or an affiliate is given a score for each refugee. The higher the score, the better the match.

This is a drastic departure from how refugees are typically resettled. Each week, HIAS and the eight other agencies that allocate refugees in the United States make their decisions based largely on local capacity, with limited emphasis on individual characteristics or needs….(More)”.

How to Argue with an Algorithm: Lessons from the COMPAS ProPublica Debate


Paper by Anne L. Washington: “The United States optimizes the efficiency of its growing criminal justice system with algorithms however, legal scholars have overlooked how to frame courtroom debates about algorithmic predictions. In State v Loomis, the defense argued that the court’s consideration of risk assessments during sentencing was a violation of due process because the accuracy of the algorithmic prediction could not be verified. The Wisconsin Supreme Court upheld the consideration of predictive risk at sentencing because the assessment was disclosed and the defendant could challenge the prediction by verifying the accuracy of data fed into the algorithm.

Was the court correct about how to argue with an algorithm?

The Loomis court ignored the computational procedures that processed the data within the algorithm. How algorithms calculate data is equally as important as the quality of the data calculated. The arguments in Loomis revealed a need for new forms of reasoning to justify the logic of evidence-based tools. A “data science reasoning” could provide ways to dispute the integrity of predictive algorithms with arguments grounded in how the technology works.

This article’s contribution is a series of arguments that could support due process claims concerning predictive algorithms, specifically the Correctional Offender Management Profiling for Alternative Sanctions (“COMPAS”) risk assessment. As a comprehensive treatment, this article outlines the due process arguments in Loomis, analyzes arguments in an ongoing academic debate about COMPAS, and proposes alternative arguments based on the algorithm’s organizational context….(More)”

Report on Algorithmic Risk Assessment Tools in the U.S. Criminal Justice System


Press release: “The Partnership on AI (PAI) has today published a report gathering the views of the multidisciplinary artificial intelligence and machine learning research and ethics community which documents the serious shortcomings of algorithmic risk assessment tools in the U.S. criminal justice system. These kinds of AI tools for deciding on whether to detain or release defendants are in widespread use around the United States, and some legislatures have begun to mandate their use. Lessons drawn from the U.S. context have widespread applicability in other jurisdictions, too, as the international policymaking community considers the deployment of similar tools.

While criminal justice risk assessment tools are often simpler than the deep neural networks used in many modern artificial intelligence systems, they are basic forms of AI. As such, they present a paradigmatic example of the high-stakes social and ethical consequences of automated AI decision-making….

Across the report, challenges to using these tools fell broadly into three primary categories:

  1. Concerns about the accuracy, bias, and validity in the tools themselves
    • Although the use of these tools is in part motivated by the desire to mitigate existing human fallibility in the criminal justice system, this report suggests that it is a serious misunderstanding to view tools as objective or neutral simply because they are based on data.
  2. Issues with the interface between the tools and the humans who interact with them
    • In addition to technical concerns, these tools must be held to high standards of interpretability and explainability to ensure that users (including judges, lawyers, and clerks, among others) can understand how the tools’ predictions are reached and make reasonable decisions based on these predictions.
  3. Questions of governance, transparency, and accountability
    • To the extent that such systems are adapted to make life-changing decisions, tools and decision-makers who specify, mandate, and deploy them must meet high standards of transparency and accountability.

This report highlights some of the key challenges with the use of risk assessment tools for criminal justice applications. It also raises some deep philosophical and procedural issues which may not be easy to resolve. Surfacing and addressing those concerns will require ongoing research and collaboration between policymakers, the AI research community, civil society groups, and affected communities, as well as new types of data collection and transparency. It is PAI’s mission to spur and facilitate these conversations and to produce research to bridge such gaps….(More)”

AI & Global Governance: Robots Will Not Only Wage Future Wars but also Future Peace


Daanish Masood & Martin Waehlisch at the United Nations University: “At the United Nations, we have been exploring completely different scenarios for AI: its potential to be used for the noble purposes of peace and security. This could revolutionize the way of how we prevent and solve conflicts globally.

Two of the most promising areas are Machine Learning and Natural Language Processing. Machine Learning involves computer algorithms detecting patterns from data to learn how to make predictions and recommendations. Natural Language Processing involves computers learning to understand human languages.

At the UN Secretariat, our chief concern is with how these emerging technologies can be deployed for the good of humanity to de-escalate violence and increase international stability.

This endeavor has admirable precedent. During the Cold War, computer scientists used multilayered simulations to predict the scale and potential outcome of the arms race between the East and the West.

Since then, governments and international agencies have increasingly used computational models and advanced Machine Learning to try to understand recurrent conflict patterns and forecast moments of state fragility.

But two things have transformed the scope for progress in this field.

The first is the sheer volume of data now available from what people say and do online. The second is the game-changing growth in computational capacity that allows us to crunch unprecedented, inconceivable quantities data with relative speed and ease.

So how can this help the United Nations build peace? Three ways come to mind.

Firstly, overcoming cultural and language barriers. By teaching computers to understand human language and the nuances of dialects, not only can we better link up what people write on social media to local contexts of conflict, we can also more methodically follow what people say on radio and TV. As part of the UN’s early warning efforts, this can help us detect hate speech in a place where the potential for conflict is high. This is crucial because the UN often works in countries where internet coverage is low, and where the spoken languages may not be well understood by many of its international staff.

Natural Language Processing algorithms can help to track and improve understanding of local debates, which might well be blind spots for the international community. If we combine such methods with Machine Learning chatbots, the UN could conduct large-scale digital focus groups with thousands in real-time, enabling different demographic segments in a country to voice their views on, say, a proposed peace deal – instantly testing public support, and indicating the chances of sustainability.

Secondly, anticipating the deeper drivers of conflict. We could combine new imaging techniques – whether satellites or drones – with automation. For instance, many parts of the world are experiencing severe groundwater withdrawal and water aquifer depletion. Water scarcity, in turn, drives conflicts and undermines stability in post-conflict environments, where violence around water access becomes more likely, along with large movements of people leaving newly arid areas.

One of the best predictors of water depletion is land subsidence or sinking, which can be measured by satellite and drone imagery. By combining these imaging techniques with Machine Learning, the UN can work in partnership with governments and local communities to anticipate future water conflicts and begin working proactively to reduce their likelihood.

Thirdly, advancing decision making. In the work of peace and security, it is surprising how many consequential decisions are still made solely on the basis of intuition.

Yet complex decisions often need to navigate conflicting goals and undiscovered options, against a landscape of limited information and political preference. This is where we can use Deep Learning – where a network can absorb huge amounts of public data and test it against real-world examples on which it is trained while applying with probabilistic modeling. This mathematical approach can help us to generate models of our uncertain, dynamic world with limited data.

With better data, we can eventually make better predictions to guide complex decisions. Future senior peace envoys charged with mediating a conflict would benefit from such advances to stress test elements of a peace agreement. Of course, human decision-making will remain crucial, but would be informed by more evidence-driven robust analytical tools….(More)”.

LAPD moving away data-driven crime programs over potential racial bias


Mark Puente in The Los Angeles Times: “The Los Angeles Police Department pioneered the controversial use of data to pinpoint crime hot spots and track violent offenders.

Complex algorithms and vast databases were supposed to revolutionize crime fighting, making policing more efficient as number-crunching computers helped to position scarce resources.

But critics long complained about inherent bias in the data — gathered by officers — that underpinned the tools.

They claimed a partial victory when LAPD Chief Michel Moore announced he would end one highly touted program intended to identify and monitor violent criminals. On Tuesday, the department’s civilian oversight panel raised questions about whether another program, aimed at reducing property crime, also disproportionately targets black and Latino communities.

Members of the Police Commission demanded more information about how the agency plans to overhaul a data program that helps predict where and when crimes will likely occur. One questioned why the program couldn’t be suspended.

“There is very limited information” on the program’s impact, Commissioner Shane Murphy Goldsmith said.

The action came as so-called predictive policing— using search tools, point scores and other methods — is under increasing scrutiny by privacy and civil liberties groups that say the tactics result in heavier policing of black and Latino communities. The argument was underscored at Tuesday’s commission meeting when several UCLA academics cast doubt on the research behind crime modeling and predictive policing….(More)”.

Introducing the Contractual Wheel of Data Collaboration


Blog by Andrew Young and Stefaan Verhulst: “Earlier this year we launched the Contracts for Data Collaboration (C4DC) initiative — an open collaborative with charter members from The GovLab, UN SDSN Thematic Research Network on Data and Statistics (TReNDS), University of Washington and the World Economic Forum. C4DC seeks to address the inefficiencies of developing contractual agreements for public-private data collaboration by informing and guiding those seeking to establish a data collaborative by developing and making available a shared repository of relevant contractual clauses taken from existing legal agreements. Today TReNDS published “Partnerships Founded on Trust,” a brief capturing some initial findings from the C4DC initiative.

The Contractual Wheel of Data Collaboration [beta]

The Contractual Wheel of Data Collaboration [beta] — Stefaan G. Verhulst and Andrew Young, The GovLab

As part of the C4DC effort, and to support Data Stewards in the private sector and decision-makers in the public and civil sectors seeking to establish Data Collaboratives, The GovLab developed the Contractual Wheel of Data Collaboration [beta]. The Wheel seeks to capture key elements involved in data collaboration while demystifying contracts and moving beyond the type of legalese that can create confusion and barriers to experimentation.

The Wheel was developed based on an assessment of existing legal agreements, engagement with The GovLab-facilitated Data Stewards Network, and analysis of the key elements of our Data Collaboratives Methodology. It features 22 legal considerations organized across 6 operational categories that can act as a checklist for the development of a legal agreement between parties participating in a Data Collaborative:…(More)”.

San Francisco teams up with Uber, location tracker on 911 call responses


Gwendolyn Wu at San Francisco Chronicle: “In an effort to shorten emergency response times in San Francisco, the city announced on Monday that it is now using location data from RapidSOS, a New York-based public safety tech company, and ride-hailing company Uber to improve location coordinates generated from 911 calls.

An increasing amount of emergency calls are made from cell phones, said Michelle Cahn, RapidSOS’s director of community engagement. The new technology should allow emergency responders to narrow down the location of such callers and replace existing 911 technology that was built for landlines and tied to home addresses.

Cell phone location data currently given to dispatchers when they receive a 911 call can be vague, especially if the person can’t articulate their exact location, according to the Department of Emergency Management.

But if a dispatcher can narrow down where the emergency is happening, that increases the chance of a timely response and better result, Cahn said.

“It doesn’t matter what’s going on with the emergency if we don’t know where it is,” she said.

RapidSOS shares its location data — collected by Apple and Google for their in-house map apps — free of charge to public safety agencies. San Francisco’s 911 call center adopted the data service in September 2018.

The Federal Communications Commission estimates agencies could save as many as 10,000 lives a year if they shave a minute off response times. Federal officials issued new rules to improve wireless 911 calls in 2015, asking mobile carriers to provide more accurate locations to call centers. Carriers are required to find a way to triangulate the caller’s location within 50 meters — a much smaller radius than the eight blocks city officials were initially presented in October when the caller dialed 911…(More)”.

Characterizing the Biomedical Data-Sharing Landscape


Paper by Angela G. Villanueva et al: “Advances in technologies and biomedical informatics have expanded capacity to generate and share biomedical data. With a lens on genomic data, we present a typology characterizing the data-sharing landscape in biomedical research to advance understanding of the key stakeholders and existing data-sharing practices. The typology highlights the diversity of data-sharing efforts and facilitators and reveals how novel data-sharing efforts are challenging existing norms regarding the role of individuals whom the data describe.

Technologies such as next-generation sequencing have dramatically expanded capacity to generate genomic data at a reasonable cost, while advances in biomedical informatics have created new tools for linking and analyzing diverse data types from multiple sources. Further, many research-funding agencies now mandate that grantees share data. The National Institutes of Health’s (NIH) Genomic Data Sharing (GDS) Policy, for example, requires NIH-funded research projects generating large-scale human genomic data to share those data via an NIH-designated data repository such as the Database of Geno-types and Phenotypes (dbGaP). Another example is the Parent Project Muscular Dystrophy, a non-profit organization that requires applicants to propose a data-sharing plan and take into account an applicant’s history of data sharing.

The flow of data to and from different projects, institutions, and sectors is creating a medical information commons (MIC), a data-sharing ecosystem consisting of networked resources sharing diverse health-related data from multiple sources for research and clinical uses. This concept aligns with the 2018 NIH Strategic Plan for Data Science, which uses the term “data ecosystem” to describe “a distributed, adaptive, open system with properties of self-organization, scalability and sustainability” and proposes to “modernize the biomedical research data ecosystem” by funding projects such as the NIH Data Commons. Consistent with Elinor Ostrom’s discussion of nested institutional arrangements, an MIC is both singular and plural and may describe the ecosystem as a whole or individual components contributing to the ecosystem. Thus, resources like the NIH Data Commons with its associated institutional arrangements are MICs, and also form part of the larger MIC that encompasses all such resources and arrangements.

Although many research funders incentivize data sharing, in practice, progress in making biomedical data broadly available to maximize its utility is often hampered by a broad range of technical, legal, cultural, normative, and policy challenges that include achieving interoperability, changing the standards for academic promotion, and addressing data privacy and security concerns. Addressing these challenges requires multi-stakeholder involvement. To identify relevant stakeholders and advance understanding of the contributors to an MIC, we conducted a landscape analysis of existing data-sharing efforts and facilitators. Our work builds on typologies describing various aspects of data sharing that focused on biobanks, research consortia, or where data reside (e.g., degree of data centralization).7 While these works are informative, we aimed to capture the biomedical data-sharing ecosystem with a wider scope. Understanding the components of an MIC ecosystem and how they interact, and identifying emerging trends that test existing norms (such as norms respecting the role of individuals from whom the data describe), is essential to fostering effective practices, policies and governance structures, guiding resource allocation, and promoting the overall sustainability of the MIC….(More)”

How Recommendation Algorithms Run the World


Article by Zeynep Tufekci: “What should you watch? What should you read? What’s news? What’s trending? Wherever you go online, companies have come up with very particular, imperfect ways of answering these questions. Everywhere you look, recommendation engines offer striking examples of how values and judgments become embedded in algorithms and how algorithms can be gamed by strategic actors.

Consider a common, seemingly straightforward method of making suggestions: a recommendation based on what people “like you” have read, watched, or shopped for. What exactly is a person like me? Which dimension of me? Is it someone of the same age, gender, race, or location? Do they share my interests? My eye color? My height? Or is their resemblance to me determined by a whole mess of “big data” (aka surveillance) crunched by a machine-learning algorithm?

Deep down, behind every “people like you” recommendation is a computational method for distilling stereotypes through data. Even when these methods work, they can help entrench the stereotypes they’re mobilizing. They might easily recommend books about coding to boys and books about fashion to girls, simply by tracking the next most likely click. Of course, that creates a feedback cycle: If you keep being shown coding books, you’re probably more likely to eventually check one out.

Another common method for generating recommendations is to extrapolate from patterns in how people consume things. People who watched this then watched that; shoppers who purchased this item also added that one to their shopping cart. Amazon uses this method a lot, and I admit, it’s often quite useful. Buy an electric toothbrush? How nice that the correct replacement head appears in your recommendations. Congratulations on your new vacuum cleaner: Here are some bags that fit your machine.

But these recommendations can also be revealing in ways that are creepy. …

One final method for generating recommendations is to identify what’s “trending” and push that to a broader user base. But this, too, involves making a lot of judgments….(More)”.

Leveraging Big Data for Social Responsibility


Paper by Cynthia Ann Peterson: “Big data has the potential to revolutionize the way social risks are managed by providing enhanced insight to enable more informed actions to be taken. The objective of this paper is to share the approach taken by PETRONAS to leverage big data to enhance its social performance practice, specifically in social risk assessments and grievance mechanism.

The paper will deliberate on the benefits, challenges and opportunities to improve the management of social risk through analytics, and how PETRONAS has taken those factors into consideration in the enhancement of its social risk assessment and grievance mechanism tools. Key considerations such as disaggregation of data, the appropriate leading and lagging indicators and having a human rights lens to data will also be discussed.

Leveraging on big data is still in its early stages in the social risk space, similar with other areas in the oil and gas industry according to research by Wood Mackenzie. Even so, there are several concerns which include; the aggregation of data may result in risks to minority or vulnerable groups not getting surfaced; privacy breaches which violate human rights and potential discrimination due to prescriptive analysis, such as on a community’s propensity to pose certain social risks to projects or operations. Certainly, there are many challenges ahead which need to be considered, including how best to take a human rights approach to using big data.

Nevertheless, harnessing the power of big data will help social risk practitioners turn a high volume of disparate pieces of raw data from grievance mechanisms and social risk assessments into information that can be used to avoid or mitigate risks now and in the future through predictive technology. Consumer and other industries are benefiting from this leverage now, and social performance practitioners in the oil and gas industry can emulate these proven models….(More)”.