Everyone Has A Price — And Corporations Know Yours


Article by David Dayen: “Six years ago, I was at a conference at the University of Chicago, the intellectual heart of corporate-friendly capitalism, when my eyes found the cover of the Chicago Booth Review, the business school’s flagship publication. “Are You Ready for Personalized Pricing?” the headline asked. I wasn’t, so I started reading.

The story looked at how online shopping, persistent data collection, and machine-learning algorithms could combine to generate the stuff of economists’ dreams: individual prices for each customer. It even recounted an experiment in 2015, where online employment website ZipRecruiter essentially outsourced its pricing strategy to two University of Chicago economists, Sanjog Misra and Jean-Pierre Dubé…(More)”.

(Almost) 200 Years of News-Based Economic Sentiment


Paper by Jules H. van Binsbergen, Svetlana Bryzgalova, Mayukh Mukhopadhyay & Varun Sharma: “Using text from 200 million pages of 13,000 US local newspapers and machine learning methods, we construct a 170-year-long measure of economic sentiment at the country and state levels, that expands existing measures in both the time series (by more than a century) and the cross-section. Our measure predicts GDP (both nationally and locally), consumption, and employment growth, even after controlling for commonly-used predictors, as well as monetary policy decisions. Our measure is distinct from the information in expert forecasts and leads its consensus value. Interestingly, news coverage has become increasingly negative across all states in the past half-century…(More)”.

The Collaboverse: A Collaborative Data-Sharing and Speech Analysis Platform


Paper by Justin D. Dvorak and Frank R. Boutsen: “Collaboration in the field of speech-language pathology occurs across a variety of digital devices and can entail the usage of multiple software tools, systems, file formats, and even programming languages. Unfortunately, gaps between the laboratory, clinic, and classroom can emerge in part because of siloing of data and workflows, as well as the digital divide between users. The purpose of this tutorial is to present the Collaboverse, a web-based collaborative system that unifies these domains, and describe the application of this tool to common tasks in speech-language pathology. In addition, we demonstrate its utility in machine learning (ML) applications…

This tutorial outlines key concepts in the digital divide, data management, distributed computing, and ML. It introduces the Collaboverse workspace for researchers, clinicians, and educators in speech-language pathology who wish to improve their collaborative network and leverage advanced computation abilities. It also details an ML approach to prosodic analysis….

The Collaboverse shows promise in narrowing the digital divide and is capable of generating clinically relevant data, specifically in the area of prosody, whose computational complexity has limited widespread analysis in research and clinic alike. In addition, it includes an augmentative and alternative communication app allowing visual, nontextual communication…(More)”.

The MAGA Plan to End Free Weather Reports


Article by Zoë Schlanger: “In the United States, as in most other countries, weather forecasts are a freely accessible government amenity. The National Weather Service issues alerts and predictions, warning of hurricanes and excessive heat and rainfall, all at the total cost to American taxpayers of roughly $4 per person per year. Anyone with a TV, smartphone, radio, or newspaper can know what tomorrow’s weather will look like, whether a hurricane is heading toward their town, or if a drought has been forecast for the next season. Even if they get that news from a privately owned app or TV station, much of the underlying weather data are courtesy of meteorologists working for the federal government.

Charging for popular services that were previously free isn’t generally a winning political strategy. But hard-right policy makers appear poised to try to do just that should Republicans gain power in the next term. Project 2025—a nearly 900-page book of policy proposals published by the conservative think tank the Heritage Foundation—states that an incoming administration should all but dissolve the National Oceanic and Atmospheric Administration, under which the National Weather Service operates….NOAA “should be dismantled and many of its functions eliminated, sent to other agencies, privatized, or placed under the control of states and territories,” Project 2025 reads. … “The preponderance of its climate-change research should be disbanded,” the document says. It further notes that scientific agencies such as NOAA are “vulnerable to obstructionism of an Administration’s aims,” so appointees should be screened to ensure that their views are “wholly in sync” with the president’s…(More)”.

Diversity in Artificial Intelligence Conferences


Report by the divinAI (Diversity in Artificial Intelligence) Project: “…provides a set of diversity indicators for seven core artificial intelligence (AI) conferences from 2007 to 2023: the International Joint Conference on Artificial Intelligence (IJCAI), the Annual Association for the Advancement of Artificial Intelligence (AAAI) Conference, the International Conference on Machine Learning (ICML), Neural Information Processing Systems (NeurIPS) Conference, the Association for Computing Machinery (ACM) Recommender Systems (RecSys) Conference, the European Conference on Artificial Intelligence (ECAI) and the European Conference on Machine Learning/Practice of Knowledge Discovery in Databases (ECML/PKDD) .
We observe that, in general, Conference Diversity Index (CDI) values are still low for the selected conferences, although showing a slight temporal improvement thanks to diversity initiatives in the AI field. We also note slight differences between conferences, being RecSys the one with higher comparative diversity indicators, followed by general AI conferences (IJCAI, ECAI and AAAI). The selected Machine Learning conferences NeurIPS and ICML seem to provide lower values for diversity indicators.
Regarding the different dimensions of diversity, gender diversity reflects a low proportion of female authors in all considered conferences, even given current gender diversity efforts in the field, which is in line with the low presence of women in technological fields. In terms of country distribution, we observe a notable presence of researchers from the EU, US and China in the selected conferences, where the presence of Chinese authors has increased in the last few years. Regarding institutions, universities and research centers or institutes play a central role in the AI scientific conferences under analysis, and the presence of industry seems to be more notable in machine learning conferences. An online dashboard that allows exploration and reproducibility complements the report…(More)”.

AI: a transformative force in maternal healthcare


Article by Afifa Waheed: “Artificial intelligence (AI) and robotics have enormous potential in healthcare and are quickly shifting the landscape – emerging as a transformative force. They offer a new dimension to the way healthcare professionals approach disease diagnosis, treatment and monitoring. AI is being used in healthcare to help diagnose patients, for drug discovery and development, to improve physician-patient communication, to transcribe voluminous medical documents, and to analyse genomics and genetics. Labs are conducting research work faster than ever before, work that otherwise would have taken decades without the assistance of AI. AI-driven research in life sciences has included applications looking to address broad-based areas, such as diabetes, cancer, chronic kidney disease and maternal health.

In addition to increasing the knowledge of access to postnatal and neonatal care, AI can predict the risk of adverse events in antenatal and postnatal women and their neonatal care. It can be trained to identify those at risk of adverse events, by using patients’ health information such as nutrition status, age, existing health conditions and lifestyle factors. 

AI can further be used to improve access to women located in rural areas with a lack of trained professionals – AI-enabled ultrasound can assist front-line workers with image interpretation for a comprehensive set of obstetrics measurements, increasing quality access to early foetal ultrasound scans. The use of AI assistants and chatbots can also improve pregnant mothers’ experience by helping them find available physicians, schedule appointments and even answer some patient questions…

Many healthcare professionals I have spoken to emphasised that pre-existing conditions such as high blood pressure that leads to preeclampsia, iron deficiency, cardiovascular disease, age-related issues for those over 35, various other existing health conditions, and failure in the progress of labour that might lead to Caesarean (C-section), could all cause maternal deaths. Training AI models to detect these diseases early on and accurately for women could prove to be beneficial. AI algorithms can leverage advanced algorithms, machine learning (ML) techniques, and predictive models to enhance decision-making, optimise healthcare delivery, and ultimately improve patient outcomes in foeto-maternal health…(More)”.

Gen AI: too much spend, too little benefit?


Article by Jason Koebler: “Investment giant Goldman Sachs published a research paper about the economic viability of generative AI which notes that there is “little to show for” the huge amount of spending on generative AI infrastructure and questions “whether this large spend will ever pay off in terms of AI benefits and returns.” 

The paper, called “Gen AI: too much spend, too little benefit?” is based on a series of interviews with Goldman Sachs economists and researchers, MIT professor Daron Acemoglu, and infrastructure experts. The paper ultimately questions whether generative AI will ever become the transformative technology that Silicon Valley and large portions of the stock market are currently betting on, but says investors may continue to get rich anyway. “Despite these concerns and constraints, we still see room for the AI theme to run, either because AI starts to deliver on its promise, or because bubbles take a long time to burst,” the paper notes. 

Goldman Sachs researchers also say that AI optimism is driving large growth in stocks like Nvidia and other S&P 500 companies (the largest companies in the stock market), but say that the stock price gains we’ve seen are based on the assumption that generative AI is going to lead to higher productivity (which necessarily means automation, layoffs, lower labor costs, and higher efficiency). These stock gains are already baked in, Goldman Sachs argues in the paper: “Although the productivity pick-up that AI promises could benefit equities via higher profit growth, we find that stocks often anticipate higher productivity growth before it materializes, raising the risk of overpaying. And using our new long-term return forecasting framework, we find that a very favorable AI scenario may be required for the S&P 500 to deliver above-average returns in the coming decade.”…(More)

Protecting Policy Space for Indigenous Data Sovereignty Under International Digital Trade Law


Paper by Andrew D. Mitchell and Theo Samlidis: “The impact of economic agreements on Indigenous peoples’ broader rights and interests has been subject to ongoing scrutiny. Technological developments and an increasing emphasis on Indigenous sovereignty within the digital domain have given rise to a global Indigenous data sovereignty movement, surfacing concerns about how international economic law impacts Indigenous peoples’ sovereignty over their data. This Article examines the policy space certain governments have reserved under international economic agreements to introduce measures for protecting Indigenous data or digital sovereignty (IDS). We argue that treaty countries have secured, under recent international digital trade chapters and agreements, the benefits of a comprehensive economic treaty and sufficient regulatory autonomy to protect Indigenous data sovereignty…(More)”

The era of predictive AI Is almost over


Essay by Dean W. Ball: “Artificial intelligence is a Rorschach test. When OpenAI’s GPT-4 was released in March 2023, Microsoft researchers triumphantly, and prematurely, announced that it possessed “sparks” of artificial general intelligence. Cognitive scientist Gary Marcus, on the other hand, argued that Large Language Models like GPT-4 are nowhere close to the loosely defined concept of AGI. Indeed, Marcus is skeptical of whether these models “understand” anything at all. They “operate over ‘fossilized’ outputs of human language,” he wrote in a 2023 paper, “and seem capable of implementing some automatic computations pertaining to distributional statistics, but are incapable of understanding due to their lack of generative world models.” The “fossils” to which Marcus refers are the models’ training data — these days, something close to all the text on the Internet.

This notion — that LLMs are “just” next-word predictors based on statistical models of text — is so common now as to be almost a trope. It is used, both correctly and incorrectly, to explain the flaws, biases, and other limitations of LLMs. Most importantly, it is used by AI skeptics like Marcus to argue that there will soon be diminishing returns from further LLM development: We will get better and better statistical approximations of existing human knowledge, but we are not likely to see another qualitative leap toward “general intelligence.”

There are two problems with this deflationary view of LLMs. The first is that next-word prediction, at sufficient scale, can lead models to capabilities that no human designed or even necessarily intended — what some call “emergent” capabilities. The second problem is that increasingly — and, ironically, starting with ChatGPT — language models employ techniques that combust the notion of pure next-word prediction of Internet text…(More)”