Measuring the mobile body


Article by Laura Jung: “…While nation states have been collecting data on citizens for the purposes of taxation and military recruitment for centuries, its indexing, organization in databases and classification for particular governmental purposes – such as controlling the mobility of ‘undesirable’ populations – is a nineteenth-century invention. The French historian and philosopher Michel Foucault describes how, in the context of growing urbanization and industrialization, states became increasingly preoccupied with the question of ‘circulation’. Persons and goods, as well as pathogens, circulated further than they had in the early modern period. While states didn’t seek to suppress or control these movements entirely, they sought means to increase what was seen as ‘positive’ circulation and minimize ‘negative’ circulation. They deployed the novel tools of a positivist social science for this purpose: statistical approaches were used in the field of demography to track and regulate phenomena such as births, accidents, illness and deaths. The emerging managerial nation state addressed the problem of circulation by developing a very particular toolkit amassing detailed information about the population and developing standardized methods of storage and analysis.

One particularly vexing problem was the circulation of known criminals. In the nineteenth century, it was widely believed that if a person offended once, they would offend again. However, the systems available for criminal identification were woefully inadequate to the task.

As criminologist Simon Cole explains, identifying an unknown person requires a ‘truly unique body mark’. Yet before the advent of modern systems of identification, there were only two ways to do this: branding or personal recognition. While branding had been widely used in Europe and North America on convicts, prisoners and enslaved people, evolving ideas around criminality and punishment largely led to the abolition of physical marking in the early nineteenth century. The criminal record was established in its place: a written document cataloguing the convict’s name and a written description of their person, including identifying marks and scars…(More)”.

AI-driven public services and the privacy paradox: do citizens really care about their privacy?


Paper by Based on privacy calculus theory, we derive hypotheses on the role of perceived usefulness and privacy risks of artificial intelligence (AI) in public services. In a representative vignette experiment (n = 1,048), we asked citizens whether they would download a mobile app to interact in an AI-driven public service. Despite general concerns about privacy, we find that citizens are not susceptible to the amount of personal information they must share, nor to a more anthropomorphic interface. Our results confirm the privacy paradox, which we frame in the literature on the government’s role to safeguard ethical principles, including citizens’ privacy…(More)”.

The impact of generative artificial intelligence on socioeconomic inequalities and
policy making


Paper by Valerio Capraro et al: “Generative artificial intelligence, including chatbots like ChatGPT, has the potential to both exacerbate and ameliorate existing socioeconomic inequalities. In this article, we provide a state-of-the-art interdisciplinary overview of the probable impacts of generative AI on four critical domains: work, education, health, and information. Our goal is to warn about how generative AI could worsen existing inequalities while illuminating directions for using AI to resolve pervasive social problems. Generative AI in the workplace can boost productivity and create new jobs, but the benefits will likely be distributed unevenly. In education, it offers personalized learning but may widen the digital divide. In healthcare, it improves diagnostics and accessibility but could deepen pre-existing inequalities. For information, it democratizes content creation and access but also dramatically expands the production and proliferation of misinformation. Each section covers a specific topic, evaluates existing research, identifies critical gaps, and recommends research directions. We conclude with a section highlighting the role of policymaking to maximize generative AI’s potential to reduce inequalities while
mitigating its harmful effects. We discuss strengths and weaknesses of existing policy frameworks in the European Union, the United States, and the United Kingdom, observing that each fails to fully confront the socioeconomic challenges we have identified. We contend that these policies should promote shared prosperity through the advancement of generative AI. We suggest several concrete policies to encourage further research and debate. This article emphasizes the need for interdisciplinary collaborations to understand and address the complex challenges of generative AI…(More)”.

Data-Driven Innovation in the Creative Industries


Open Access Book edited by Melissa Terras, Vikki Jones, Nicola Osborne, and Chris Speed: “The creative industries – the place where art, business, and technology meet in economic activity – have been hugely affected by the relatively recent digitalisation (and often monetisation) of work, home, relationships, and leisure. Such trends were accelerated by the global COVID-19 pandemic. This edited collection examines how the creative industries can be supported to make best use of opportunities in digital technology and data-driven innovation.

Since digital markets and platforms are now essential for revenue generation and audience engagement, there is a vital need for improved data and digital skills in the creative and cultural sectors. Taking a necessarily global perspective, this book explores the challenges and opportunities of data-driven approaches to creativity in different contexts across the arts, cultural, and heritage sectors. Chapters reach beyond the platforms and approaches provided by the technology sector to delve into the collaborative work that supports innovation around the interdisciplinary and cross-sectoral issues that emerge where data infrastructures and approaches meet creativity.

A novel intervention that uniquely centres the role of data in the theory and practice of creative industries’ innovation, this book is valuable reading for those researching and studying the creative economy as well for those who drive investment for the creative industries in a digitalised society…(More)”.

The tech industry can’t agree on what open-source AI means. That’s a problem.


Article by Edd Gent: “Suddenly, “open source” is the latest buzzword in AI circles. Meta has pledged to create open-source artificial general intelligence. And Elon Musk is suing OpenAI over its lack of open-source AI models.

Meanwhile, a growing number of tech leaders and companies are setting themselves up as open-source champions. 

But there’s a fundamental problem—no one can agree on what “open-source AI” means. 

On the face of it, open-source AI promises a future where anyone can take part in the technology’s development. That could accelerate innovation, boost transparency, and give users greater control over systems that could soon reshape many aspects of our lives. But what even is it? What makes an AI model open source, and what disqualifies it?

The answers could have significant ramifications for the future of the technology. Until the tech industry has settled on a definition, powerful companies can easily bend the concept to suit their own needs, and it could become a tool to entrench the dominance of today’s leading players.

Entering this fray is the Open Source Initiative (OSI), the self-appointed arbiters of what it means to be open source. Founded in 1998, the nonprofit is the custodian of the Open Source Definition, a widely accepted set of rules that determine whether a piece of software can be considered open source. 

Now, the organization has assembled a 70-strong group of researchers, lawyers, policymakers, activists, and representatives from big tech companies like Meta, Google, and Amazon to come up with a working definition of open-source AI…(More)”.

New Jersey is turning to AI to improve the job search process


Article by Beth Simone Noveck: “Americans are experiencing some conflicting feelings about AI.

While people are flocking to new roles like prompt engineer and AI ethicist, the technology is also predicted to put many jobs at risk, including computer programmers, data scientists, graphic designers, writers, lawyers.

Little wonder, then, that a national survey by the Heldrich Center for Workforce Development found an overwhelming majority of Americans (66%) believe that they “will need more technological skills to achieve their career goals.” One thing is certain: Workers will need to train for change. And in a world of misinformation-filled social media platforms, it is increasingly important for trusted public institutions to provide reliable, data-driven resources.

In New Jersey, we’ve tried doing just that by collaborating with workers, including many with disabilities, to design technology that will support better decision-making around training and career change. Investing in similar public AI-powered tools could help support better consumer choice across various domains. When a public entity designs, controls and implements AI, there is a far greater likelihood that this powerful technology will be used for good.

In New Jersey, the public can find reliable, independent, unbiased information about training and upskilling on the state’s new MyCareer website, which uses AI to make personalized recommendations about your career prospects, and the training you will need to be ready for a high-growth, in-demand job…(More)”.

Data Rules: Reinventing the Market Economy


Book by Cristina Alaimo and Jannis Kallinikos: “Digital data have become the critical frontier where emerging economic practices and organizational forms confront the traditional economic order and its institutions. In Data Rules, Cristina Alaimo and Jannis Kallinikos establish a social science framework for analyzing the unprecedented social and economic restructuring brought about by data. Working at the intersection of information systems and organizational studies, they draw extensively on intellectual currents in sociology, semiotics, cognitive science and technology, and social theory. Making the case for turning “data-making” into an area of inquiry of its own, the authors uncover how data are deeply implicated in rewiring the institutions of the market economy.

The authors associate digital data with the decentering of organizations. As they point out, centered systems make sense only when firms (and formal organizations more broadly) can keep the external world at arm’s length and maintain a relative operation independence from it. These patterns no longer hold. Data transform the production of goods and services to an endless series of exchanges and interactions that defeat the functional logics of markets and organizations. The diffusion of platforms and ecosystems is indicative of these broader transformations. Rather than viewing data as simply a force of surveillance and control, the authors place the transformative potential of data at the center of an emerging socioeconomic order that restructures society and its institutions…(More)”.

Global AI governance: barriers and pathways forward 


Paper by Huw Roberts, Emmie Hine, Mariarosaria Taddeo, Luciano Floridi: “This policy paper is a response to the growing calls for ambitious new international institutions for AI. It maps the geopolitical and institutional barriers to stronger global AI governance and considers potential pathways forward in light of these constraints. We argue that a promising foundation of international regimes focused on AI governance is emerging, but the centrality of AI to interstate competition, dysfunctional international institutions and disagreement over policy priorities problematizes substantive cooperation. We propose strengthening the existing weak ‘regime complex’ of international institutions as the most desirable and realistic path forward for global AI governance. Strengthening coordination between, and the capacities of, existing institutions supports mutually reinforcing policy change, which, if enacted properly, can lead to catalytic change across the various policy areas where AI has an impact. It also facilitates the flexible governance needed for rapidly evolving technologies.

To make this argument, we outline key global AI governance processes in the next section. In the third section, we analyse how first- and second-order cooperation problems in international relations apply to AI. In the fourth section we assess potential routes for advancing global AI governance, and we conclude by providing recommendations on how to strengthen the weak AI regime complex…(More)”.

Citizen scientists—practices, observations, and experience


Paper by Michael O’Grady & Eleni Mangina: “Citizen science has been studied intensively in recent years. Nonetheless, the voice of citizen scientists is often lost despite their altruistic and indispensable role. To remedy this deficiency, a survey on the overall experiences of citizen scientists was undertaken. Dimensions investigated include activities, open science concepts, and data practices. However, the study prioritizes knowledge and practices of data and data management. When a broad understanding of data is lacking, the ability to make informed decisions about consent and data sharing, for example, is compromised. Furthermore, the potential and impact of individual endeavors and collaborative projects are reduced. Findings indicate that understanding of data management principles is limited. Furthermore, an unawareness of common data and open science concepts was observed. It is concluded that appropriate training and a raised awareness of Responsible Research and Innovation concepts would benefit individual citizen scientists, their projects, and society…(More)”.

Mechanisms for Researcher Access to Online Platform Data


Status Report by the EU/USA: “Academic and civil society research on prominent online platforms has become a crucial way to understand the information environment and its impact on our societies. Scholars across the globe have leveraged application programming interfaces (APIs) and web crawlers to collect public user-generated content and advertising content on online platforms to study societal issues ranging from technology-facilitated gender-based violence, to the impact of media on mental health for children and youth. Yet, a changing landscape of platforms’ data access mechanisms and policies has created uncertainty and difficulty for critical research projects.


The United States and the European Union have a shared commitment to advance data access for researchers, in line with the high-level principles on access to data from online platforms for researchers announced at the EU-U.S. Trade and Technology Council (TTC) Ministerial Meeting in May 2023.1 Since the launch of the TTC, the EU Digital Services Act (DSA) has gone into effect, requiring providers of Very Large Online Platforms (VLOPs) and Very Large Online Search Engines (VLOSEs) to provide increased transparency into their services. The DSA includes provisions on transparency reports, terms and conditions, and explanations for content moderation decisions. Among those, two provisions provide important access to publicly available content on platforms:


• DSA Article 40.12 requires providers of VLOPs/VLOSEs to provide academic and civil society researchers with data that is “publicly accessible in their online interface.”
• DSA Article 39 requires providers of VLOPs/VLOSEs to maintain a public repository of advertisements.

The announcements related to new researcher access mechanisms mark an important development and opportunity to better understand the information environment. This status report summarizes a subset of mechanisms that are available to European and/or United States researchers today, following, in part VLOPs and VLOSEs measures to comply with the DSA. The report aims at showcasing the existing access modalities and encouraging the use of these mechanisms to study the impact of online platform’s design and decisions on society. The list of mechanisms reviewed is included in the Appendix…(More)”