Selected Readings on Crowdsourcing Expertise


The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of crowdsourcing was originally published in 2014.

Crowdsourcing enables leaders and citizens to work together to solve public problems in new and innovative ways. New tools and platforms enable citizens with differing levels of knowledge, expertise, experience and abilities to collaborate and solve problems together. Identifying experts, or individuals with specialized skills, knowledge or abilities with regard to a specific topic, and incentivizing their participation in crowdsourcing information, knowledge or experience to achieve a shared goal can enhance the efficiency and effectiveness of problem solving.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)

Börner, Katy, Michael Conlon, Jon Corson-Rikert, and Ying Ding. “VIVO: A Semantic Approach to Scholarly Networking and Discovery.” Synthesis Lectures on the Semantic Web: Theory and Technology 2, no. 1 (October 17, 2012): 1–178. http://bit.ly/17huggT.

  • This e-book “provides an introduction to VIVO…a tool for representing information about research and researchers — their scholarly works, research interests, and organizational relationships.”
  • VIVO is a response to the fact that, “Information for scholars — and about scholarly activity — has not kept pace with the increasing demands and expectations. Information remains siloed in legacy systems and behind various access controls that must be licensed or otherwise negotiated before access. Information representation is in its infancy. The raw material of scholarship — the data and information regarding previous work — is not available in common formats with common semantics.”
  • Providing access to structured information on the work and experience of a diversity of scholars enables improved expert finding — “identifying and engaging experts whose scholarly works is of value to one’s own. To find experts, one needs rich data regarding one’s own work and the work of potential related experts. The authors argue that expert finding is of increasing importance since, “[m]ulti-disciplinary and inter-disciplinary investigation is increasingly required to address complex problems. 

Bozzon, Alessandro, Marco Brambilla, Stefano Ceri, Matteo Silvestri, and Giuliano Vesci. “Choosing the Right Crowd: Expert Finding in Social Networks.” In Proceedings of the 16th International Conference on Extending Database Technology, 637–648. EDBT  ’13. New York, NY, USA: ACM, 2013. http://bit.ly/18QbtY5.

  • This paper explores the challenge of selecting experts within the population of social networks by considering the following problem: “given an expertise need (expressed for instance as a natural language query) and a set of social network members, who are the most knowledgeable people for addressing that need?”
  • The authors come to the following conclusions:
    • “profile information is generally less effective than information about resources that they directly create, own or annotate;
    • resources which are produced by others (resources appearing on the person’s Facebook wall or produced by people that she follows on Twitter) help increasing the assessment precision;
    • Twitter appears the most effective social network for expertise matching, as it very frequently outperforms all other social networks (either combined or alone);
    • Twitter appears as well very effective for matching expertise in domains such as computer engineering, science, sport, and technology & games, but Facebook is also very effective in fields such as locations, music, sport, and movies & tv;
    • surprisingly, LinkedIn appears less effective than other social networks in all domains (including computer science) and overall.”

Brabham, Daren C. “The Myth of Amateur Crowds.” Information, Communication & Society 15, no. 3 (2012): 394–410. http://bit.ly/1hdnGJV.

  • Unlike most of the related literature, this paper focuses on bringing attention to the expertise already being tapped by crowdsourcing efforts rather than determining ways to identify more dormant expertise to improve the results of crowdsourcing.
  • Brabham comes to two central conclusions: “(1) crowdsourcing is discussed in the popular press as a process driven by amateurs and hobbyists, yet empirical research on crowdsourcing indicates that crowds are largely self-selected professionals and experts who opt-in to crowdsourcing arrangements; and (2) the myth of the amateur in crowdsourcing ventures works to label crowds as mere hobbyists who see crowdsourcing ventures as opportunities for creative expression, as entertainment, or as opportunities to pass the time when bored. This amateur/hobbyist label then undermines the fact that large amounts of real work and expert knowledge are exerted by crowds for relatively little reward and to serve the profit motives of companies. 

Dutton, William H. Networking Distributed Public Expertise: Strategies for Citizen Sourcing Advice to Government. One of a Series of Occasional Papers in Science and Technology Policy, Science and Technology Policy Institute, Institute for Defense Analyses, February 23, 2011. http://bit.ly/1c1bpEB.

  • In this paper, a case is made for more structured and well-managed crowdsourcing efforts within government. Specifically, the paper “explains how collaborative networking can be used to harness the distributed expertise of citizens, as distinguished from citizen consultation, which seeks to engage citizens — each on an equal footing.” Instead of looking for answers from an undefined crowd, Dutton proposes “networking the public as advisors” by seeking to “involve experts on particular public issues and problems distributed anywhere in the world.”
  • Dutton argues that expert-based crowdsourcing can be successfully for government for a number of reasons:
    • Direct communication with a diversity of independent experts
    • The convening power of government
    • Compatibility with open government and open innovation
    • Synergy with citizen consultation
    • Building on experience with paid consultants
    • Speed and urgency
    • Centrality of documents to policy and practice.
  • He also proposes a nine-step process for government to foster bottom-up collaboration networks:
    • Do not reinvent the technology
    • Focus on activities, not the tools
    • Start small, but capable of scaling up
    • Modularize
    • Be open and flexible in finding and going to communities of experts
    • Do not concentrate on one approach to all problems
    • Cultivate the bottom-up development of multiple projects
    • Experience networking and collaborating — be a networked individual
    • Capture, reward, and publicize success.

Goel, Gagan, Afshin Nikzad and Adish Singla. “Matching Workers with Tasks: Incentives in Heterogeneous Crowdsourcing Markets.” Under review by the International World Wide Web Conference (WWW). 2014. http://bit.ly/1qHBkdf

  • Combining the notions of crowdsourcing expertise and crowdsourcing tasks, this paper focuses on the challenge within platforms like Mechanical Turk related to intelligently matching tasks to workers.
  • The authors’ call for more strategic assignment of tasks in crowdsourcing markets is based on the understanding that “each worker has certain expertise and interests which define the set of tasks she can and is willing to do.”
  • Focusing on developing meaningful incentives based on varying levels of expertise, the authors sought to create a mechanism that, “i) is incentive compatible in the sense that it is truthful for agents to report their true cost, ii) picks a set of workers and assigns them to the tasks they are eligible for in order to maximize the utility of the requester, iii) makes sure total payments made to the workers doesn’t exceed the budget of the requester.

Gubanov, D., N. Korgin, D. Novikov and A. Kalkov. E-Expertise: Modern Collective Intelligence. Springer, Studies in Computational Intelligence 558, 2014. http://bit.ly/U1sxX7

  • In this book, the authors focus on “organization and mechanisms of expert decision-making support using modern information and communication technologies, as well as information analysis and collective intelligence technologies (electronic expertise or simply e-expertise).”
  • The book, which “addresses a wide range of readers interested in management, decision-making and expert activity in political, economic, social and industrial spheres, is broken into five chapters:
    • Chapter 1 (E-Expertise) discusses the role of e-expertise in decision-making processes. The procedures of e-expertise are classified, their benefits and shortcomings are identified, and the efficiency conditions are considered.
    • Chapter 2 (Expert Technologies and Principles) provides a comprehensive overview of modern expert technologies. A special emphasis is placed on the specifics of e-expertise. Moreover, the authors study the feasibility and reasonability of employing well-known methods and approaches in e-expertise.
    • Chapter 3 (E-Expertise: Organization and Technologies) describes some examples of up-to-date technologies to perform e-expertise.
    • Chapter 4 (Trust Networks and Competence Networks) deals with the problems of expert finding and grouping by information and communication technologies.
    • Chapter 5 (Active Expertise) treats the problem of expertise stability against any strategic manipulation by experts or coordinators pursuing individual goals.

Holst, Cathrine. “Expertise and Democracy.” ARENA Report No 1/14, Center for European Studies, University of Oslo. http://bit.ly/1nm3rh4

  • This report contains a set of 16 papers focused on the concept of “epistocracy,” meaning the “rule of knowers.” The papers inquire into the role of knowledge and expertise in modern democracies and especially in the European Union (EU). Major themes are: expert-rule and democratic legitimacy; the role of knowledge and expertise in EU governance; and the European Commission’s use of expertise.
    • Expert-rule and democratic legitimacy
      • Papers within this theme concentrate on issues such as the “implications of modern democracies’ knowledge and expertise dependence for political and democratic theory.” Topics include the accountability of experts, the legitimacy of expert arrangements within democracies, the role of evidence in policy-making, how expertise can be problematic in democratic contexts, and “ethical expertise” and its place in epistemic democracies.
    • The role of knowledge and expertise in EU governance
      • Papers within this theme concentrate on “general trends and developments in the EU with regard to the role of expertise and experts in political decision-making, the implications for the EU’s democratic legitimacy, and analytical strategies for studying expertise and democratic legitimacy in an EU context.”
    • The European Commission’s use of expertise
      • Papers within this theme concentrate on how the European Commission uses expertise and in particular the European Commission’s “expertgroup system.” Topics include the European Citizen’s Initiative, analytic-deliberative processes in EU food safety, the operation of EU environmental agencies, and the autonomy of various EU agencies.

King, Andrew and Karim R. Lakhani. “Using Open Innovation to Identify the Best Ideas.” MIT Sloan Management Review, September 11, 2013. http://bit.ly/HjVOpi.

  • In this paper, King and Lakhani examine different methods for opening innovation, where, “[i]nstead of doing everything in-house, companies can tap into the ideas cloud of external expertise to develop new products and services.”
  • The three types of open innovation discussed are: opening the idea-creation process, competitions where prizes are offered and designers bid with possible solutions; opening the idea-selection process, ‘approval contests’ in which outsiders vote to determine which entries should be pursued; and opening both idea generation and selection, an option used especially by organizations focused on quickly changing needs.

Long, Chengjiang, Gang Hua and Ashish Kapoor. Active Visual Recognition with Expertise Estimation in Crowdsourcing. 2013 IEEE International Conference on Computer Vision. December 2013. http://bit.ly/1lRWFur.

  • This paper is focused on improving the crowdsourced labeling of visual datasets from platforms like Mechanical Turk. The authors note that, “Although it is cheap to obtain large quantity of labels through crowdsourcing, it has been well known that the collected labels could be very noisy. So it is desirable to model the expertise level of the labelers to ensure the quality of the labels. The higher the expertise level a labeler is at, the lower the label noises he/she will produce.”
  • Based on the need for identifying expert labelers upfront, the authors developed an “active classifier learning system which determines which users to label which unlabeled examples” from collected visual datasets.
  • The researchers’ experiments in identifying expert visual dataset labelers led to findings demonstrating that the “active selection” of expert labelers is beneficial in cutting through the noise of crowdsourcing platforms.

Noveck, Beth Simone. “’Peer to Patent’: Collective Intelligence, Open Review, and Patent Reform.” Harvard Journal of Law & Technology 20, no. 1 (Fall 2006): 123–162. http://bit.ly/HegzTT.

  • This law review article introduces the idea of crowdsourcing expertise to mitigate the challenge of patent processing. Noveck argues that, “access to information is the crux of the patent quality problem. Patent examiners currently make decisions about the grant of a patent that will shape an industry for a twenty-year period on the basis of a limited subset of available information. Examiners may neither consult the public, talk to experts, nor, in many cases, even use the Internet.”
  • Peer-to-Patent, which launched three years after this article, is based on the idea that, “The new generation of social software might not only make it easier to find friends but also to find expertise that can be applied to legal and policy decision-making. This way, we can improve upon the Constitutional promise to promote the progress of science and the useful arts in our democracy by ensuring that only worth ideas receive that ‘odious monopoly’ of which Thomas Jefferson complained.”

Ober, Josiah. “Democracy’s Wisdom: An Aristotelian Middle Way for Collective Judgment.” American Political Science Review 107, no. 01 (2013): 104–122. http://bit.ly/1cgf857.

  • In this paper, Ober argues that, “A satisfactory model of decision-making in an epistemic democracy must respect democratic values, while advancing citizens’ interests, by taking account of relevant knowledge about the world.”
  • Ober describes an approach to decision-making that aggregates expertise across multiple domains. This “Relevant Expertise Aggregation (REA) enables a body of minimally competent voters to make superior choices among multiple options, on matters of common interest.”

Sims, Max H., Jeffrey Bigham, Henry Kautz and Marc W. Halterman. Crowdsourcing medical expertise in near real time.” Journal of Hospital Medicine 9, no. 7, July 2014. http://bit.ly/1kAKvq7.

  • In this article, the authors discuss the develoment of a mobile application called DocCHIRP, which was developed due to the fact that, “although the Internet creates unprecedented access to information, gaps in the medical literature and inefficient searches often leave healthcare providers’ questions unanswered.”
  • The DocCHIRP pilot project used a “system of point-to-multipoint push notifications designed to help providers problem solve by crowdsourcing from their peers.”
  • Healthcare providers (HCPs) sought to gain intelligence from the crowd, which included 85 registered users, on questions related to medication, complex medical decision making, standard of care, administrative, testing and referrals.
  • The authors believe that, “if future iterations of the mobile crowdsourcing applications can address…adoption barriers and support the organic growth of the crowd of HCPs,” then “the approach could have a positive and transformative effect on how providers acquire relevant knowledge and care for patients.”

Spina, Alessandro. “Scientific Expertise and Open Government in the Digital Era: Some Reflections on EFSA and Other EU Agencies.” in Foundations of EU Food Law and Policy, eds. A. Alemmano and S. Gabbi. Ashgate, 2014. http://bit.ly/1k2EwdD.

  • In this paper, Spina “presents some reflections on how the collaborative and crowdsourcing practices of Open Government could be integrated in the activities of EFSA [European Food Safety Authority] and other EU agencies,” with a particular focus on “highlighting the benefits of the Open Government paradigm for expert regulatory bodies in the EU.”
  • Spina argues that the “crowdsourcing of expertise and the reconfiguration of the information flows between European agencies and teh public could represent a concrete possibility of modernising the role of agencies with a new model that has a low financial burden and an almost immediate effect on the legal governance of agencies.”
  • He concludes that, “It is becoming evident that in order to guarantee that the best scientific expertise is provided to EU institutions and citizens, EFSA should strive to use the best organisational models to source science and expertise.”

Urban Analytics (Updated and Expanded)


As part of an ongoing effort to build a knowledge base for the field of opening governance by organizing and disseminating its learnings, the GovLab Selected Readings series provides an annotated and curated collection of recommended works on key opening governance topics. In this edition, we explore the literature on Urban Analytics. To suggest additional readings on this or any other topic, please email biblio@thegovlab.org.

Data and its uses for Governance

Urban Analytics places better information in the hands of citizens as well as government officials to empower people to make more informed choices. Today, we are able to gather real-time information about traffic, pollution, noise, and environmental and safety conditions by culling data from a range of tools: from the low-cost sensors in mobile phones to more robust monitoring tools installed in our environment. With data collected and combined from the built, natural and human environments, we can develop more robust predictive models and use those models to make policy smarter.

With the computing power to transmit and store the data from these sensors, and the tools to translate raw data into meaningful visualizations, we can identify problems as they happen, design new strategies for city management, and target the application of scarce resources where they are most needed.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)
Amini, L., E. Bouillet, F. Calabrese, L. Gasparini, and O. Verscheure. “Challenges and Results in City-scale Sensing.” In IEEE Sensors, 59–61, 2011. http://bit.ly/1doodZm.

  • This paper examines “how city requirements map to research challenges in machine learning, optimization, control, visualization, and semantic analysis.”
  • The authors raises several research challenges including how to extract accurate information when the data is noisy and sparse; how to represent findings from digital pervasive technologies; and how people interact with one another and their environment.

Batty, M., K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz, G. Ouzounis, and Y. Portugali. “Smart Cities of the Future.The European Physical Journal Special Topics 214, no. 1 (November 1, 2012): 481–518. http://bit.ly/HefbjZ.

  • This paper explores the goals and research challenges involved in the development of smart cities that merge ICT with traditional infrastructures through digital technologies.
  • The authors put forth several research objectives, including: 1) to explore the notion of the city as a laboratory for innovation; 2) to develop technologies that ensure equity, fairness and realize a better quality of city life; and 3) to develop technologies that ensure informed participation and create shared knowledge for democratic city governance.
  • The paper also examines several contemporary smart city initiatives, expected paradigm shifts in the field, benefits, risks and impacts.

Budde, Paul. “Smart Cities of Tomorrow.” In Cities for Smart Environmental and Energy Futures, edited by Stamatina Th Rassia and Panos M. Pardalos, 9–20. Energy Systems. Springer Berlin Heidelberg, 2014. http://bit.ly/17MqPZW.

  • This paper examines the components and strategies involved in the creation of smart cities featuring “cohesive and open telecommunication and software architecture.”
  • In their study of smart cities, the authors examine smart and renewable energy; next-generation networks; smart buildings; smart transport; and smart government.
  • They conclude that for the development of smart cities, information and communication technology (ICT) is needed to build more horizontal collaborative structures, useful data must be analyzed in real time and people and/or machines must be able to make instant decisions related to social and urban life.

Cardone, G., L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, and R. Curtmola. “Fostering Participaction in Smart Cities: a Geo-social Crowdsensing Platform.” IEEE Communications
Magazine 51, no. 6 (2013): 112–119. http://bit.ly/17iJ0vZ.

  • This article examines “how and to what extent the power of collective although imprecise intelligence can be employed in smart cities.”
  • To tackle problems of managing the crowdsensing process, this article proposes a “crowdsensing platform with three main original technical aspects: an innovative geo-social model to profile users along different variables, such as time, location, social interaction, service usage, and human activities; a matching algorithm to autonomously choose people to involve in participActions and to quantify the performance of their sensing; and a new Android-based platform to collect sensing data from smart phones, automatically or with user help, and to deliver sensing/actuation tasks to users.”

Chen, Chien-Chu. “The Trend towards ‘Smart Cities.’” International Journal of Automation and Smart Technology. June 1, 2014. http://bit.ly/1jOOaAg.

  • In this study, Chen explores the ambitions, prevalence and outcomes of a variety of smart cities, organized into five categories:
    • Transportation-focused smart cities
    • Energy-focused smart cities
    • Building-focused smart cities
    • Water-resources-focused smart cities
    • Governance-focused smart cities
  • The study finds that the “Asia Pacific region accounts for the largest share of all smart city development plans worldwide, with 51% of the global total. Smart city development plans in the Asia Pacific region tend to be energy-focused smart city initiatives, aimed at easing the pressure on energy resources that will be caused by continuing rapid urbanization in the future.”
  • North America, on the other hand is generally more geared toward energy-focused smart city development plans. “In North America, there has been a major drive to introduce smart meters and smart electric power grids, integrating the electric power sector with information and communications technology (ICT) and replacing obsolete electric power infrastructure, so as to make cities’ electric power systems more reliable (which in turn can help to boost private-sector investment, stimulate the growth of the ‘green energy’ industry, and create more job opportunities).”
  • Looking to Taiwan as an example, Chen argues that, “Cities in different parts of the world face different problems and challenges when it comes to urban development, making it necessary to utilize technology applications from different fields to solve the unique problems that each individual city has to overcome; the emphasis here is on the development of customized solutions for smart city development.”

Domingo, A., B. Bellalta, M. Palacin, M. Oliver and E. Almirall. “Public Open Sensor Data: Revolutionizing Smart Cities.” Technology and Society Magazine, IEEE 32, No. 4. Winter 2013. http://bit.ly/1iH6ekU.

  • In this article, the authors explore the “enormous amount of information collected by sensor devices” that allows for “the automation of several real-time services to improve city management by using intelligent traffic-light patterns during rush hour, reducing water consumption in parks, or efficiently routing garbage collection trucks throughout the city.”
  • They argue that, “To achieve the goal of sharing and open data to the public, some technical expertise on the part of citizens will be required. A real environment – or platform – will be needed to achieve this goal.” They go on to introduce a variety of “technical challenges and considerations involved in building an Open Sensor Data platform,” including:
    • Scalability
    • Reliability
    • Low latency
    • Standardized formats
    • Standardized connectivity
  • The authors conclude that, despite incredible advancements in urban analytics and open sensing in recent years, “Today, we can only imagine the revolution in Open Data as an introduction to a real-time world mashup with temperature, humidity, CO2 emission, transport, tourism attractions, events, water and gas consumption, politics decisions, emergencies, etc., and all of this interacting with us to help improve the future decisions we make in our public and private lives.”

Harrison, C., B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, and P. Williams. “Foundations for Smarter Cities.” IBM Journal of Research and Development 54, no. 4 (2010): 1–16. http://bit.ly/1iha6CR.

  • This paper describes the information technology (IT) foundation and principles for Smarter Cities.
  • The authors introduce three foundational concepts of smarter cities: instrumented, interconnected and intelligent.
  • They also describe some of the major needs of contemporary cities, and concludes that Creating the Smarter City implies capturing and accelerating flows of information both vertically and horizontally.

Hernández-Muñoz, José M., Jesús Bernat Vercher, Luis Muñoz, José A. Galache, Mirko Presser, Luis A. Hernández Gómez, and Jan Pettersson. “Smart Cities at the Forefront of the Future Internet.” In The Future Internet, edited by John Domingue, Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Petros Daras, et al., 447–462. Lecture Notes in Computer Science 6656. Springer Berlin Heidelberg, 2011. http://bit.ly/HhNbMX.

  • This paper explores how the “Internet of Things (IoT) and Internet of Services (IoS), can become building blocks to progress towards a unified urban-scale ICT platform transforming a Smart City into an open innovation platform.”
  • The authors examine the SmartSantander project to argue that, “the different stakeholders involved in the smart city business is so big that many non-technical constraints must be considered (users, public administrations, vendors, etc.).”
  • The authors also discuss the need for infrastructures at the, for instance, European level for realistic large-scale experimentally-driven research.

Hoon-Lee, Jung, Marguerite Gong Hancock, Mei-Chih Hu. “Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco.” Technological Forecasting and Social Change. Ocotober 3, 2013. http://bit.ly/1rzID5v.

  • In this study, the authors aim to “shed light on the process of building an effective smart city by integrating various practical perspectives with a consideration of smart city characteristics taken from the literature.”
  • They propose a conceptual framework based on case studies from Seoul and San Francisco built around the following dimensions:
    • Urban openness
    • Service innovation
    • Partnerships formation
    • Urban proactiveness
    • Smart city infrastructure integration
    • Smart city governance
  • The authors conclude with a summary of research findings featuring “8 stylized facts”:
    • Movement towards more interactive services engaging citizens;
    • Open data movement facilitates open innovation;
    • Diversifying service development: exploit or explore?
    • How to accelerate adoption: top-down public driven vs. bottom-up market driven partnerships;
    • Advanced intelligent technology supports new value-added smart city services;
    • Smart city services combined with robust incentive systems empower engagement;
    • Multiple device & network accessibility can create network effects for smart city services;
    • Centralized leadership implementing a comprehensive strategy boosts smart initiatives.

Kamel Boulos, Maged N. and Najeeb M. Al-Shorbaji. “On the Internet of Things, smart cities and the WHO Healthy Cities.” International Journal of Health Geographics 13, No. 10. 2014. http://bit.ly/Tkt9GA.

  • In this article, the authors give a “brief overview of the Internet of Things (IoT) for cities, offering examples of IoT-powered 21st century smart cities, including the experience of the Spanish city of Barcelona in implementing its own IoT-driven services to improve the quality of life of its people through measures that promote an eco-friendly, sustainable environment.”
  • The authors argue that one of the central needs for harnessing the power of the IoT and urban analytics is for cities to “involve and engage its stakeholders from a very early stage (city officials at all levels, as well as citizens), and to secure their support by raising awareness and educating them about smart city technologies, the associated benefits, and the likely challenges that will need to be overcome (such as privacy issues).”
  • They conclude that, “The Internet of Things is rapidly gaining a central place as key enabler of the smarter cities of today and the future. Such cities also stand better chances of becoming healthier cities.”

Keller, Sallie Ann, Steven E. Koonin, and Stephanie Shipp. “Big Data and City Living – What Can It Do for Us?Significance 9, no. 4 (2012): 4–7. http://bit.ly/166W3NP.

  • This article provides a short introduction to Big Data, its importance, and the ways in which it is transforming cities. After an overview of the social benefits of big data in an urban context, the article examines its challenges, such as privacy concerns and institutional barriers.
  • The authors recommend that new approaches to making data available for research are needed that do not violate the privacy of entities included in the datasets. They believe that balancing privacy and accessibility issues will require new government regulations and incentives.

Kitchin, Rob. “The Real-Time City? Big Data and Smart Urbanism.” SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, July 3, 2013. http://bit.ly/1aamZj2.

  • This paper focuses on “how cities are being instrumented with digital devices and infrastructure that produce ‘big data’ which enable real-time analysis of city life, new modes of technocratic urban governance, and a re-imagining of cities.”
  • The authors provide “a number of projects that seek to produce a real-time analysis of the city and provides a critical reflection on the implications of big data and smart urbanism.”

Mostashari, A., F. Arnold, M. Maurer, and J. Wade. “Citizens as Sensors: The Cognitive City Paradigm.” In 2011 8th International Conference Expo on Emerging Technologies for a Smarter World (CEWIT), 1–5, 2011. http://bit.ly/1fYe9an.

  • This paper argues that. “implementing sensor networks are a necessary but not sufficient approach to improving urban living.”
  • The authors introduce the concept of the “Cognitive City” – a city that can not only operate more efficiently due to networked architecture, but can also learn to improve its service conditions, by planning, deciding and acting on perceived conditions.
  • Based on this conceptualization of a smart city as a cognitive city, the authors propose “an architectural process approach that allows city decision-makers and service providers to integrate cognition into urban processes.”

Oliver, M., M. Palacin, A. Domingo, and V. Valls. “Sensor Information Fueling Open Data.” In Computer Software and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual, 116–121, 2012. http://bit.ly/HjV4jS.

  • This paper introduces the concept of sensor networks as a key component in the smart cities framework, and shows how real-time data provided by different city network sensors enrich Open Data portals and require a new architecture to deal with massive amounts of continuously flowing information.
  • The authors’ main conclusion is that by providing a framework to build new applications and services using public static and dynamic data that promote innovation, a real-time open sensor network data platform can have several positive effects for citizens.

Perera, Charith, Arkady Zaslavsky, Peter Christen and Dimitrios Georgakopoulos. “Sensing as a service model for smart cities supported by Internet of Things.” Transactions on Emerging Telecommunications Technologies 25, Issue 1. January 2014. http://bit.ly/1qJLDP9.

  • This paper looks into the “enormous pressure towards efficient city management” that has “triggered various Smart City initiatives by both government and private sector businesses to invest in information and communication technologies to find sustainable solutions to the growing issues.”
  • The authors explore the parallel advancement of the Internet of Things (IoT), which “envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities.”
  • The paper proposes the sensing as a service model “as a solution based on IoT infrastructure.” The sensing as a service model consists of four conceptual layers: “(i) sensors and sensor owners; (ii) sensor publishers (SPs); (iii) extended service providers (ESPs); and (iv) sensor data consumers. They go on to describe how this model would work in the areas of waste management, smart agriculture and environmental management.

Privacy, Big Data, and the Public Good: Frameworks for Engagement. Edited by Julia Lane, Victoria Stodden, Stefan Bender, and Helen Nissenbaum; Cambridge University Press, 2014. http://bit.ly/UoGRca.

  • This book focuses on the legal, practical, and statistical approaches for maximizing the use of massive datasets while minimizing information risk.
  • “Big data” is more than a straightforward change in technology.  It poses deep challenges to our traditions of notice and consent as tools for managing privacy.  Because our new tools of data science can make it all but impossible to guarantee anonymity in the future, the authors question whether it possible to truly give informed consent, when we cannot, by definition, know what the risks are from revealing personal data either for individuals or for society as a whole.
  • Based on their experience building large data collections, authors discuss some of the best practical ways to provide access while protecting confidentiality.  What have we learned about effective engineered controls?  About effective access policies?  About designing data systems that reinforce – rather than counter – access policies?  They also explore the business, legal, and technical standards necessary for a new deal on data.
  • Since the data generating process or the data collection process is not necessarily well understood for big data streams, authors discuss what statistics can tell us about how to make greatest scientific use of this data. They also explore the shortcomings of current disclosure limitation approaches and whether we can quantify the extent of privacy loss.

Schaffers, Hans, Nicos Komninos, Marc Pallot, Brigitte Trousse, Michael Nilsson, and Alvaro Oliveira. “Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation.” In The Future Internet, edited by John Domingue, Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Petros Daras, et al., 431–446. Lecture Notes in Computer Science 6656. Springer Berlin Heidelberg, 2011. http://bit.ly/16ytKoT.

  • This paper “explores ‘smart cities’ as environments of open and user-driven innovation for experimenting and validating Future Internet-enabled services.”
  • The authors examine several smart city projects to illustrate the central role of users in defining smart services and the importance of participation. They argue that, “Two different layers of collaboration can be distinguished. The first layer is collaboration within the innovation process. The second layer concerns collaboration at the territorial level, driven by urban and regional development policies aiming at strengthening the urban innovation systems through creating effective conditions for sustainable innovation.”

Suciu, G., A. Vulpe, S. Halunga, O. Fratu, G. Todoran, and V. Suciu. “Smart Cities Built on Resilient Cloud Computing and Secure Internet of Things.” In 2013 19th International Conference on Control Systems and Computer Science (CSCS), 513–518, 2013. http://bit.ly/16wfNgv.

  • This paper proposes “a new platform for using cloud computing capacities for provision and support of ubiquitous connectivity and real-time applications and services for smart cities’ needs.”
  • The authors present a “framework for data procured from highly distributed, heterogeneous, decentralized, real and virtual devices (sensors, actuators, smart devices) that can be automatically managed, analyzed and controlled by distributed cloud-based services.”

Townsend, Anthony. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia. W. W. Norton & Company, 2013.

  • In this book, Townsend illustrates how “cities worldwide are deploying technology to address both the timeless challenges of government and the mounting problems posed by human settlements of previously unimaginable size and complexity.”
  • He also considers “the motivations, aspirations, and shortcomings” of the many stakeholders involved in the development of smart cities, and poses a new civics to guide these efforts.
  • He argues that smart cities are not made smart by various, soon-to-be-obsolete technologies built into its infrastructure, but how citizens use these ever-changing technologies to be “human-centered, inclusive and resilient.”

To stay current on recent writings and developments on Urban Analytics, please subscribe to the GovLab Digest.
Did we miss anything? Please submit reading recommendations to biblio@thegovlab.org or in the comments below.

Making We the People More User-Friendly Than Ever


The White House: “With more than 14 million users and 21 million signatures, We the People, the White House’s online petition platform, has proved more popular than we ever thought possible. In the nearly three years since launch, we’ve heard from you on a huge range of topics, and issued more than 225 responses.

But we’re not stopping there. We’ve been working to make it easier to sign a petition and today we’re proud to announce the next iteration of We the People.

Since launch, we’ve heard from users who wanted a simpler, more streamlined way to sign petitions without creating an account and logging in every time. This latest update makes that a reality.

We’re calling it “simplified signing” and it takes the account creation step out of signing a petition. As of today, just enter your basic information, confirm your signature via email and you’re done. That’s it. No account to create, no logging in, no passwords to remember.

We the People User Statistics

That’s great news for new users, but we’re betting it’ll be welcomed by our returning signers, too. If you signed a petition six months ago and you don’t remember your password, you don’t have to worry about resetting it. Just enter your email address, confirm your signature, and you’re done.

Go check it out right now on petitions.whitehouse.gov.

How Crowdsourced Astrophotographs on the Web Are Revolutionizing Astronomy


Emerging Technology From the arXiv: “Astrophotography is currently undergoing a revolution thanks to the increased availability of high quality digital cameras and the software available to process the pictures after they have been taken.
Since photographs of the night sky are almost always better with long exposures that capture more light, this processing usually involves combining several images of the same part of the sky to produce one with a much longer effective exposure.
That’s all straightforward if you’ve taken the pictures yourself with the same gear under the same circumstances. But astronomers want to do better.
“The astrophotography group on Flickr alone has over 68,000 images,” say Dustin Lang at Carnegie Mellon University in Pittsburgh and a couple of pals. These and other images represent a vast source of untapped data for astronomers.
The problem is that it’s hard to combine images accurately when little is known about how they were taken. Astronomers take great care to use imaging equipment in which the pixels produce a signal that is proportional to the number of photons that hit.
But the same cannot be said of the digital cameras widely used by amateurs. All kinds of processes can end up influencing the final image.
So any algorithm that combines them has to cope with these variations. “We want to do this without having to infer the (possibly highly nonlinear) processing that has been applied to each individual image, each of which has been wrecked in its own loving way by its creator,” say Lang and co.
Now, these guys say they’ve cracked it. They’ve developed a system that automatically combines images from the same part of the sky to increase the effective exposure time of the resulting picture. And they say the combined images can rival those from much professional telescopes.
They’ve tested this approach by downloading images of two well-known astrophysical objects: the NGC 5907 Galaxy and the colliding pair of galaxies—Messier 51a and 51b.
For NGC 5907, they ended up with 4,000 images from Flickr, 1,000 from Bing and 100 from Google. They used an online system called astrometry.net that automatically aligns and registers images of the night sky and then combined the images using their new algorithm, which they call Enhance.
The results are impressive. They say that the combined images of NGC5907 (bottom three images) show some of the same faint features that revealed a single image taken over 11 hours of exposure using a 50 cm telescope (the top left image). All the images reveal the same kind of fine detail such as a faint stellar stream around the galaxy.
The combined image for the M51 galaxies is just as impressive, taking only 40 minutes to produce on a single processor. It reveals extended structures around both galaxies, which astronomers know to be debris from their gravitational interaction as they collide.
Lang and co say these faint features are hugely important because they allow astronomers to measure the age, mass ratios, and orbital configurations of the galaxies involved. Interestingly, many of these faint features are not visible in any of the input images taken from the Web. They emerge only once images have been combined.
One potential problem with algorithms like this is that they need to perform well as the number of images they combine increases. It’s no good if they grind to a halt as soon as a substantial amount of data becomes available.
On this score, Lang and co say astronomers can rest easy. The performance of their new Enhance algorithm scales linearly with the number of images it has to combine. That means it should perform well on large datasets.
The bottom line is that this kind of crowd-sourced astronomy has the potential to make a big impact, given that the resulting images rival those from large telescopes.
And it could also be used for historical images, say Lang and co. The Harvard Plate Archives, for example, contain half a million images dating back to the 1880s. These were all taken using different emulsions, with different exposures and developed using different processes. So the plates all have different responses to light, making them hard to compare.
That’s exactly the problem that Lang and co have solved for digital images on the Web. So it’s not hard to imagine how they could easily combine the data from the Harvard archives as well….”
Ref: arxiv.org/abs/1406.1528 : Towards building a Crowd-Sourced Sky Map

How collective intelligence emerges: knowledge creation process in Wikipedia from microscopic viewpoint


Kyungho Lee  for the 2014 International Working Conference on Advanced Visual Interfaces: “The Wikipedia, one of the richest human knowledge repositories on the Internet, has been developed by collective intelligence. To gain insight into Wikipedia, one asks how initial ideas emerge and develop to become a concrete article through the online collaborative process? Led by this question, the author performed a microscopic observation of the knowledge creation process on the recent article, “Fukushima Daiichi nuclear disaster.” The author collected not only the revision history of the article but also investigated interactions between collaborators by making a user-paragraph network to reveal an intellectual intervention of multiple authors. The knowledge creation process on the Wikipedia article was categorized into 4 major steps and 6 phases from the beginning to the intellectual balance point where only revisions were made. To represent this phenomenon, the author developed a visaphor (digital visual metaphor) to digitally represent the article’s evolving concepts and characteristics. Then the author created a dynamic digital information visualization using particle effects and network graph structures. The visaphor reveals the interaction between users and their collaborative efforts as they created and revised paragraphs and debated aspects of the article.”

Let's amplify California's collective intelligence


Gavin Newsom and Ken Goldberg at the SFGate: “Although the results of last week’s primary election are still being certified, we already know that voter turnout was among the lowest in California’s history. Pundits will rant about the “cynical electorate” and wag a finger at disengaged voters shirking their democratic duties, but we see the low turnout as a symptom of broader forces that affect how people and government interact.
The methods used to find out what citizens think and believe are limited to elections, opinion polls, surveys and focus groups. These methods may produce valuable information, but they are costly, infrequent and often conducted at the convenience of government or special interests.
We believe that new technology has the potential to increase public engagement by tapping the collective intelligence of Californians every day, not just on election day.
While most politicians already use e-mail and social media, these channels are easily dominated by extreme views and tend to regurgitate material from mass media outlets.
We’re exploring an alternative.
The California Report Card is a mobile-friendly web-based platform that streamlines and organizes public input for the benefit of policymakers and elected officials. The report card allows participants to assign letter grades to key issues and to suggest new ideas for consideration; public officials then can use that information to inform their decisions.
In an experimental version of the report card released earlier this year, residents from all 58 counties assigned more than 20,000 grades to the state of California and also suggested issues they feel deserve priority at the state level. As one participant noted: “This platform allows us to have our voices heard. The ability to review and grade what others suggest is important. It enables elected officials to hear directly how Californians feel.”
Initial data confirm that Californians approve of our state’s rollout of Obamacare, but are very concerned about the future of our schools and universities.
There was also a surprise. California Report Card suggestions for top state priorities revealed consistently strong interest and support for more attention to disaster preparedness. Issues related to this topic were graded as highly important by a broad cross section of participants across the state. In response, we’re testing new versions of the report card that can focus on topics related to wildfires and earthquakes.
The report card is part of an ongoing collaboration between the CITRIS Data and Democracy Initiative at UC Berkeley and the Office of the Lieutenant Governor to explore how technology can improve public communication and bring the government closer to the people. Our hunch is that engineering concepts can be adapted for public policy to rapidly identify real insights from constituents and resist gaming by special interests.
You don’t have to wait for the next election to have your voice heard by officials in Sacramento. The California Report Card is now accessible from cell phones, desktop and tablet computers. We encourage you to contribute your own ideas to amplify California’s collective intelligence. It’s easy, just click “participate” on this website: CaliforniaReportCard.org”

Selected Readings on Crowdsourcing Tasks and Peer Production


The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of crowdsourcing was originally published in 2014.

Technological advances are creating a new paradigm by which institutions and organizations are increasingly outsourcing tasks to an open community, allocating specific needs to a flexible, willing and dispersed workforce. “Microtasking” platforms like Amazon’s Mechanical Turk are a burgeoning source of income for individuals who contribute their time, skills and knowledge on a per-task basis. In parallel, citizen science projects – task-based initiatives in which citizens of any background can help contribute to scientific research – like Galaxy Zoo are demonstrating the ability of lay and expert citizens alike to make small, useful contributions to aid large, complex undertakings. As governing institutions seek to do more with less, looking to the success of citizen science and microtasking initiatives could provide a blueprint for engaging citizens to help accomplish difficult, time-consuming objectives at little cost. Moreover, the incredible success of peer-production projects – best exemplified by Wikipedia – instills optimism regarding the public’s willingness and ability to complete relatively small tasks that feed into a greater whole and benefit the public good. You can learn more about this new wave of “collective intelligence” by following the MIT Center for Collective Intelligence and their annual Collective Intelligence Conference.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)

Benkler, Yochai. The Wealth of Networks: How Social Production Transforms Markets and Freedom. Yale University Press, 2006. http://bit.ly/1aaU7Yb.

  • In this book, Benkler “describes how patterns of information, knowledge, and cultural production are changing – and shows that the way information and knowledge are made available can either limit or enlarge the ways people can create and express themselves.”
  • In his discussion on Wikipedia – one of many paradigmatic examples of people collaborating without financial reward – he calls attention to the notable ongoing cooperation taking place among a diversity of individuals. He argues that, “The important point is that Wikipedia requires not only mechanical cooperation among people, but a commitment to a particular style of writing and describing concepts that is far from intuitive or natural to people. It requires self-discipline. It enforces the behavior it requires primarily through appeal to the common enterprise that the participants are engaged in…”

Brabham, Daren C. Using Crowdsourcing in Government. Collaborating Across Boundaries Series. IBM Center for The Business of Government, 2013. http://bit.ly/17gzBTA.

  • In this report, Brabham categorizes government crowdsourcing cases into a “four-part, problem-based typology, encouraging government leaders and public administrators to consider these open problem-solving techniques as a way to engage the public and tackle difficult policy and administrative tasks more effectively and efficiently using online communities.”
  • The proposed four-part typology describes the following types of crowdsourcing in government:
    • Knowledge Discovery and Management
    • Distributed Human Intelligence Tasking
    • Broadcast Search
    • Peer-Vetted Creative Production
  • In his discussion on Distributed Human Intelligence Tasking, Brabham argues that Amazon’s Mechanical Turk and other microtasking platforms could be useful in a number of governance scenarios, including:
    • Governments and scholars transcribing historical document scans
    • Public health departments translating health campaign materials into foreign languages to benefit constituents who do not speak the native language
    • Governments translating tax documents, school enrollment and immunization brochures, and other important materials into minority languages
    • Helping governments predict citizens’ behavior, “such as for predicting their use of public transit or other services or for predicting behaviors that could inform public health practitioners and environmental policy makers”

Boudreau, Kevin J., Patrick Gaule, Karim Lakhani, Christoph Reidl, Anita Williams Woolley. “From Crowds to Collaborators: Initiating Effort & Catalyzing Interactions Among Online Creative Workers.” Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 14-060. January 23, 2014. https://bit.ly/2QVmGUu.

  • In this working paper, the authors explore the “conditions necessary for eliciting effort from those affecting the quality of interdependent teamwork” and “consider the the role of incentives versus social processes in catalyzing collaboration.”
  • The paper’s findings are based on an experiment involving 260 individuals randomly assigned to 52 teams working toward solutions to a complex problem.
  • The authors determined the level of effort in such collaborative undertakings are sensitive to cash incentives. However, collaboration among teams was driven more by the active participation of teammates, rather than any monetary reward.

Franzoni, Chiara, and Henry Sauermann. “Crowd Science: The Organization of Scientific Research in Open Collaborative Projects.” Research Policy (August 14, 2013). http://bit.ly/HihFyj.

  • In this paper, the authors explore the concept of crowd science, which they define based on two important features: “participation in a project is open to a wide base of potential contributors, and intermediate inputs such as data or problem solving algorithms are made openly available.” The rationale for their study and conceptual framework is the “growing attention from the scientific community, but also policy makers, funding agencies and managers who seek to evaluate its potential benefits and challenges. Based on the experiences of early crowd science projects, the opportunities are considerable.”
  • Based on the study of a number of crowd science projects – including governance-related initiatives like Patients Like Me – the authors identify a number of potential benefits in the following categories:
    • Knowledge-related benefits
    • Benefits from open participation
    • Benefits from the open disclosure of intermediate inputs
    • Motivational benefits
  • The authors also identify a number of challenges:
    • Organizational challenges
    • Matching projects and people
    • Division of labor and integration of contributions
    • Project leadership
    • Motivational challenges
    • Sustaining contributor involvement
    • Supporting a broader set of motivations
    • Reconciling conflicting motivations

Kittur, Aniket, Ed H. Chi, and Bongwon Suh. “Crowdsourcing User Studies with Mechanical Turk.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 453–456. CHI ’08. New York, NY, USA: ACM, 2008. http://bit.ly/1a3Op48.

  • In this paper, the authors examine “[m]icro-task markets, such as Amazon’s Mechanical Turk, [which] offer a potential paradigm for engaging a large number of users for low time and monetary costs. [They] investigate the utility of a micro-task market for collecting user measurements, and discuss design considerations for developing remote micro user evaluation tasks.”
  • The authors conclude that in addition to providing a means for crowdsourcing small, clearly defined, often non-skill-intensive tasks, “Micro-task markets such as Amazon’s Mechanical Turk are promising platforms for conducting a variety of user study tasks, ranging from surveys to rapid prototyping to quantitative measures. Hundreds of users can be recruited for highly interactive tasks for marginal costs within a timeframe of days or even minutes. However, special care must be taken in the design of the task, especially for user measurements that are subjective or qualitative.”

Kittur, Aniket, Jeffrey V. Nickerson, Michael S. Bernstein, Elizabeth M. Gerber, Aaron Shaw, John Zimmerman, Matthew Lease, and John J. Horton. “The Future of Crowd Work.” In 16th ACM Conference on Computer Supported Cooperative Work (CSCW 2013), 2012. http://bit.ly/1c1GJD3.

  • In this paper, the authors discuss paid crowd work, which “offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale.” However, they caution that, “it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework.”
  • The authors argue that seven key challenges must be met to ensure that crowd work processes evolve and reach their full potential:
    • Designing workflows
    • Assigning tasks
    • Supporting hierarchical structure
    • Enabling real-time crowd work
    • Supporting synchronous collaboration
    • Controlling quality

Madison, Michael J. “Commons at the Intersection of Peer Production, Citizen Science, and Big Data: Galaxy Zoo.” In Convening Cultural Commons, 2013. http://bit.ly/1ih9Xzm.

  • This paper explores a “case of commons governance grounded in research in modern astronomy. The case, Galaxy Zoo, is a leading example of at least three different contemporary phenomena. In the first place, Galaxy Zoo is a global citizen science project, in which volunteer non-scientists have been recruited to participate in large-scale data analysis on the Internet. In the second place, Galaxy Zoo is a highly successful example of peer production, some times known as crowdsourcing…In the third place, is a highly visible example of data-intensive science, sometimes referred to as e-science or Big Data science, by which scientific researchers develop methods to grapple with the massive volumes of digital data now available to them via modern sensing and imaging technologies.”
  • Madison concludes that the success of Galaxy Zoo has not been the result of the “character of its information resources (scientific data) and rules regarding their usage,” but rather, the fact that the “community was guided from the outset by a vision of a specific organizational solution to a specific research problem in astronomy, initiated and governed, over time, by professional astronomers in collaboration with their expanding universe of volunteers.”

Malone, Thomas W., Robert Laubacher and Chrysanthos Dellarocas. “Harnessing Crowds: Mapping the Genome of Collective Intelligence.” MIT Sloan Research Paper. February 3, 2009. https://bit.ly/2SPjxTP.

  • In this article, the authors describe and map the phenomenon of collective intelligence – also referred to as “radical decentralization, crowd-sourcing, wisdom of crowds, peer production, and wikinomics – which they broadly define as “groups of individuals doing things collectively that seem intelligent.”
  • The article is derived from the authors’ work at MIT’s Center for Collective Intelligence, where they gathered nearly 250 examples of Web-enabled collective intelligence. To map the building blocks or “genes” of collective intelligence, the authors used two pairs of related questions:
    • Who is performing the task? Why are they doing it?
    • What is being accomplished? How is it being done?
  • The authors concede that much work remains to be done “to identify all the different genes for collective intelligence, the conditions under which these genes are useful, and the constraints governing how they can be combined,” but they believe that their framework provides a useful start and gives managers and other institutional decisionmakers looking to take advantage of collective intelligence activities the ability to “systematically consider many possible combinations of answers to questions about Who, Why, What, and How.”

Mulgan, Geoff. “True Collective Intelligence? A Sketch of a Possible New Field.” Philosophy & Technology 27, no. 1. March 2014. http://bit.ly/1p3YSdd.

  • In this paper, Mulgan explores the concept of a collective intelligence, a “much talked about but…very underdeveloped” field.
  • With a particular focus on health knowledge, Mulgan “sets out some of the potential theoretical building blocks, suggests an experimental and research agenda, shows how it could be analysed within an organisation or business sector and points to possible intellectual barriers to progress.”
  • He concludes that the “central message that comes from observing real intelligence is that intelligence has to be for something,” and that “turning this simple insight – the stuff of so many science fiction stories – into new theories, new technologies and new applications looks set to be one of the most exciting prospects of the next few years and may help give shape to a new discipline that helps us to be collectively intelligent about our own collective intelligence.”

Sauermann, Henry and Chiara Franzoni. “Participation Dynamics in Crowd-Based Knowledge Production: The Scope and Sustainability of Interest-Based Motivation.” SSRN Working Papers Series. November 28, 2013. http://bit.ly/1o6YB7f.

  • In this paper, Sauremann and Franzoni explore the issue of interest-based motivation in crowd-based knowledge production – in particular the use of the crowd science platform Zooniverse – by drawing on “research in psychology to discuss important static and dynamic features of interest and deriv[ing] a number of research questions.”
  • The authors find that interest-based motivation is often tied to a “particular object (e.g., task, project, topic)” not based on a “general trait of the person or a general characteristic of the object.” As such, they find that “most members of the installed base of users on the platform do not sign up for multiple projects, and most of those who try out a project do not return.”
  • They conclude that “interest can be a powerful motivator of individuals’ contributions to crowd-based knowledge production…However, both the scope and sustainability of this interest appear to be rather limited for the large majority of contributors…At the same time, some individuals show a strong and more enduring interest to participate both within and across projects, and these contributors are ultimately responsible for much of what crowd science projects are able to accomplish.”

Schmitt-Sands, Catherine E. and Richard J. Smith. “Prospects for Online Crowdsourcing of Social Science Research Tasks: A Case Study Using Amazon Mechanical Turk.” SSRN Working Papers Series. January 9, 2014. http://bit.ly/1ugaYja.

  • In this paper, the authors describe an experiment involving the nascent use of Amazon’s Mechanical Turk as a social science research tool. “While researchers have used crowdsourcing to find research subjects or classify texts, [they] used Mechanical Turk to conduct a policy scan of local government websites.”
  • Schmitt-Sands and Smith found that “crowdsourcing worked well for conducting an online policy program and scan.” The microtasked workers were helpful in screening out local governments that either did not have websites or did not have the types of policies and services for which the researchers were looking. However, “if the task is complicated such that it requires ongoing supervision, then crowdsourcing is not the best solution.”

Shirky, Clay. Here Comes Everybody: The Power of Organizing Without Organizations. New York: Penguin Press, 2008. https://bit.ly/2QysNif.

  • In this book, Shirky explores our current era in which, “For the first time in history, the tools for cooperating on a global scale are not solely in the hands of governments or institutions. The spread of the Internet and mobile phones are changing how people come together and get things done.”
  • Discussing Wikipedia’s “spontaneous division of labor,” Shirky argues that the process is like, “the process is more like creating a coral reef, the sum of millions of individual actions, than creating a car. And the key to creating those individual actions is to hand as much freedom as possible to the average user.”

Silvertown, Jonathan. “A New Dawn for Citizen Science.” Trends in Ecology & Evolution 24, no. 9 (September 2009): 467–471. http://bit.ly/1iha6CR.

  • This article discusses the move from “Science for the people,” a slogan adopted by activists in the 1970s to “’Science by the people,’ which is “a more inclusive aim, and is becoming a distinctly 21st century phenomenon.”
  • Silvertown identifies three factors that are responsible for the explosion of activity in citizen science, each of which could be similarly related to the crowdsourcing of skills by governing institutions:
    • “First is the existence of easily available technical tools for disseminating information about products and gathering data from the public.
    • A second factor driving the growth of citizen science is the increasing realisation among professional scientists that the public represent a free source of labour, skills, computational power and even finance.
    • Third, citizen science is likely to benefit from the condition that research funders such as the National Science Foundation in the USA and the Natural Environment Research Council in the UK now impose upon every grantholder to undertake project-related science outreach. This is outreach as a form of public accountability.”

Szkuta, Katarzyna, Roberto Pizzicannella, David Osimo. “Collaborative approaches to public sector innovation: A scoping study.” Telecommunications Policy. 2014. http://bit.ly/1oBg9GY.

  • In this article, the authors explore cases where government collaboratively delivers online public services, with a focus on success factors and “incentives for services providers, citizens as users and public administration.”
  • The authors focus on six types of collaborative governance projects:
    • Services initiated by government built on government data;
    • Services initiated by government and making use of citizens’ data;
    • Services initiated by civil society built on open government data;
    • Collaborative e-government services; and
    • Services run by civil society and based on citizen data.
  • The cases explored “are all designed in the way that effectively harnesses the citizens’ potential. Services susceptible to collaboration are those that require computing efforts, i.e. many non-complicated tasks (e.g. citizen science projects – Zooniverse) or citizens’ free time in general (e.g. time banks). Those services also profit from unique citizens’ skills and their propensity to share their competencies.”

E-Expertise: Modern Collective Intelligence


Book by Gubanov, D., Korgin, N., Novikov, D., Raikov, A.: “This book focuses on organization and mechanisms of expert decision-making support using modern information and communication technologies, as well as information analysis and collective intelligence technologies (electronic expertise or simply e-expertise).
Chapter 1 (E-Expertise) discusses the role of e-expertise in decision-making processes. The procedures of e-expertise are classified, their benefits and shortcomings are identified, and the efficiency conditions are considered.
Chapter 2 (Expert Technologies and Principles) provides a comprehensive overview of modern expert technologies. A special emphasis is placed on the specifics of e-expertise. Moreover, the authors study the feasibility and reasonability of employing well-known methods and approaches in e-expertise.
Chapter 3 (E-Expertise: Organization and Technologies) describes some examples of up-to-date technologies to perform e-expertise.
Chapter 4 (Trust Networks and Competence Networks) deals with the problems of expert finding and grouping by information and communication technologies.
Chapter 5 (Active Expertise) treats the problem of expertise stability against any strategic manipulation by experts or coordinators pursuing individual goals.
The book addresses a wide range of readers interested in management, decision-making and expert activity in political, economic, social and industrial spheres.”

The Collective Intelligence Handbook: an open experiment


Michael Bernstein: “Is there really a wisdom of the crowd? How do we get at it and understand it, utilize it, empower it?
You probably have some ideas about this. I certainly do. But I represent just one perspective. What would an economist say? A biologist? A cognitive or social psychologist? An artificial intelligence or human-computer interaction researcher? A communications scholar?
For the last two years, Tom Malone (MIT Sloan) and I (Stanford CS) have worked to bring together all these perspectives into one book. We are nearing completion, and the Collective Intelligence Handbook will be published by the MIT Press later this year. I’m still relatively dumbfounded by the rockstar lineup we have managed to convince to join up.

It’s live.

Today we went live with the authors’ current drafts of the chapters. All the current preprints are here: http://cci.mit.edu/CIchapterlinks.html

And now is when you come in.

But we’re not done. We’d love for you — the crowd — to help us make this book better. We envisioned this as an open process, and we’re excited that all the chapters are now at a point where we’re ready for critique, feedback, and your contributions.
There are two ways you can help:

  • Read the current drafts and leave comments inline in the Google Docs to help us make them better.
  • Drop suggestions in the separate recommended reading list for each chapter. We (the editors) will be using that material to help us write an introduction to each chapter.

We have one month. The authors’ final chapters are due to us in mid-June. So off we go!”

Here’s what’s in the book:

Chapter 1. Introduction
Thomas W. Malone (MIT) and Michael S. Bernstein (Stanford University)
What is collective intelligence, anyway?
Chapter 2. Human-Computer Interaction and Collective Intelligence
Jeffrey P. Bigham (Carnegie Mellon University), Michael S. Bernstein (Stanford University), and Eytan Adar (University of Michigan)
How computation can help gather groups of people to tackle tough problems together.
Chapter 3. Artificial Intelligence and Collective Intelligence
Daniel S. Weld (University of Washington), Mausam (IIT Delhi), Christopher H. Lin (University of Washington), and Jonathan Bragg (University of Washington)
Mixing machine intelligence with human intelligence could enable a synthesized intelligent actor that brings together the best of both worlds.
Chapter 4. Collective Behavior in Animals: An Ecological Perspective
Deborah M. Gordon (Stanford University)
How do groups of animals work together in distributed ways to solve difficult problems?
Chapter 5. The Wisdom of Crowds vs. the Madness of Mobs
Andrew W. Lo (MIT)
Economics has studied a collectively intelligent forum — the market — for a long time. But are we as smart as we think we are?
Chapter 6. Collective Intelligence in Teams and Organizations
Anita Williams Woolley (Carnegie Mellon University), Ishani Aggarwal (Georgia Tech), Thomas W. Malone (MIT)
How do the interactions between groups of people impact how intelligently that group acts?
Chapter 7. Cognition and Collective Intelligence
Mark Steyvers (University of California, Irvine), Brent Miller (University of California, Irvine)
Understanding the conditions under which people are smart individually can help us predict when they might be smart collectively.

Chapter 8. Peer Production: A Modality of Collective Intelligence
Yochai Benkler (Harvard University), Aaron Shaw (Northwestern University), Benjamin Mako Hill (University of Washington)
What have collective efforts such as Wikipedia taught us about how large groups come together to create knowledge and creative artifacts?

ShouldWe


About ShouldWe.org: “ShouldWe is about all of us. We believe people deserve to know not just what decisions are being taken in their name but why.  Our vision is of a world where everyone is able to interrogate policymakers’ arguments by accessing simple information about issues of public policy, and the evidence that supports it.
ShouldWe.org is a non-partisan, crowd-sourced, online guide to policy debates and the evidence which informs them. We serve journalists, analysts and advocates by aggregating the most authoritative policy information, from both sides, in one place. Our mission is to improve democratic scrutiny by resourcing journalists and other active citizens to learn more about the causes and consequences of the decisions which affect our lives.
We are a not-for-profit organisation. Please help us by contributing and editing content, telling your colleagues and friends, and letting us know how we can make ShouldWe.org better.
Learn how to create a ShouldWe page here
Find out how to help ShouldWe in other ways here.
Watch the ShouldWe video here