The Importance of Co-Designing Questions: 10 Lessons from Inquiry-Driven Grantmaking


Article by Hannah Chafetz and Stefaan Verhulst: “How can a question-based approach to philanthropy enable better learning and deeper evaluation across both sides of the partnership and help make progress towards long-term systemic change? That’s what Siegel Family Endowment (Siegel), a family foundation based in New York City, sought to answer by creating an Inquiry-Driven Grantmaking approach

While many philanthropies continue to follow traditional practices that focus on achieving a set of strategic objectives, Siegel employs an inquiry-driven approach, which focuses on answering questions that can accelerate insights and iteration across the systems they seek to change. By framing their goal as “learning” rather than an “outcome” or “metric,” they aim to generate knowledge that can be shared across the whole field and unlock impact beyond the work on individual grants. 

The Siegel approach centers on co-designing and iteratively refining questions with grantees to address evolving strategic priorities, using rapid iteration and stakeholder engagement to generate insights that inform both grantee efforts and the foundation’s decision-making.

Their approach was piloted in 2020, and refined and operationalized the years that followed. As of 2024, it was applied across the vast majority of their grantmaking portfolio. Laura Maher, Chief of Staff and Director of External Engagement at Siegel Family Endowment, notes: “Before our Inquiry-Driven Grantmaking approach we spent roughly 90% of our time on the grant writing process and 10% checking in with grantees, and now that’s balancing out more.”

Screenshot 2025 05 08 at 4.29.24 Pm

Image of the Inquiry-Driven Grantmaking Process from the Siegel Family Endowment

Earlier this year, the DATA4Philanthropy team conducted two in-depth discussions with Siegel’s Knowledge and Impact team to discuss their Inquiry-Driven Grantmaking approach and what they learned thus far from applying their new methodology. While the Siegel team notes that there is still much to be learned, there are several takeaways that can be applied to others looking to initiate a questions-led approach. 

Below we provide 10 emerging lessons from these discussions…(More)”.

Glorious RAGs : A Safer Path to Using AI in the Social Sector


Blog by Jim Fruchterman: “Social sector leaders ask me all the time for advice on using AI. As someone who started for-profit machine learning (AI) companies in the 1980s, but then pivoted to running nonprofit social enterprises, I’m often the first person from Silicon Valley that many nonprofit leaders have met. I joke that my role is often that of “anti-consultant,” talking leaders out of doing an app, a blockchain (smile) or firing half their staff because of AI. Recently, much of my role has been tamping down the excessive expectations being bandied about for the impact of AI on organizations. However, two years into the latest AI fad wave created by ChatGPT and its LLM (large language model) peers, more and more of the leaders are describing eminently sensible applications of LLMs to their programs. The most frequent of these approaches can be described as variations on “Retrieval-Augmented Generation,” also known as RAG. I am quite enthusiastic about using RAG for social impact, because it addresses a real need and supplies guardrails for using LLMs effectively…(More)”

Data Commons: The Missing Infrastructure for Public Interest Artificial Intelligence


Article by Stefaan Verhulst, Burton Davis and Andrew Schroeder: “Artificial intelligence is celebrated as the defining technology of our time. From ChatGPT to Copilot and beyond, generative AI systems are reshaping how we work, learn, and govern. But behind the headline-grabbing breakthroughs lies a fundamental problem: The data these systems depend on to produce useful results that serve the public interest is increasingly out of reach.

Without access to diverse, high-quality datasets, AI models risk reinforcing bias, deepening inequality, and returning less accurate, more imprecise results. Yet, access to data remains fragmented, siloed, and increasingly enclosed. What was once open—government records, scientific research, public media—is now locked away by proprietary terms, outdated policies, or simple neglect. We are entering a data winter just as AI’s influence over public life is heating up.

This isn’t just a technical glitch. It’s a structural failure. What we urgently need is new infrastructure: data commons.

A data commons is a shared pool of data resources—responsibly governed, managed using participatory approaches, and made available for reuse in the public interest. Done correctly, commons can ensure that communities and other networks have a say in how their data is used, that public interest organizations can access the data they need, and that the benefits of AI can be applied to meet societal challenges.

Commons offer a practical response to the paradox of data scarcity amid abundance. By pooling datasets across organizations—governments, universities, libraries, and more—they match data supply with real-world demand, making it easier to build AI that responds to public needs.

We’re already seeing early signs of what this future might look like. Projects like Common Corpus, MLCommons, and Harvard’s Institutional Data Initiative show how diverse institutions can collaborate to make data both accessible and accountable. These initiatives emphasize open standards, participatory governance, and responsible reuse. They challenge the idea that data must be either locked up or left unprotected, offering a third way rooted in shared value and public purpose.

But the pace of progress isn’t matching the urgency of the moment. While policymakers debate AI regulation, they often ignore the infrastructure that makes public interest applications possible in the first place. Without better access to high-quality, responsibly governed data, AI for the common good will remain more aspiration than reality.

That’s why we’re launching The New Commons Challenge—a call to action for universities, libraries, civil society, and technologists to build data ecosystems that fuel public-interest AI…(More)”.

Entering the Vortex


Essay by Nils Gilman: “A strange and unsettling weather pattern is forming over the landscape of scholarly research. For decades, the climate of academic inquiry was shaped by a prevailing high-pressure system, a consensus grounded in the vision articulated by Vannevar Bush in “Science: The Endless Frontier” (1945). That era was characterized by robust federal investment, a faith in the university as the engine of basic research, and a compact that traded public funding for scientific autonomy and the promise of long-term societal benefit. It was a climate conducive to the slow, deliberate, and often unpredictable growth of knowledge, nurtured by a diverse ecosystem of human researchers — the vital “seed stock” of intellectual discovery.

But that high-pressure system is collapsing. A brutal, unyielding cold front of academic defunding has swept across the nation, a consequence of shifting political priorities, populist resentment, and a calculated assault on the university as an institution perceived as hostile to certain political agendas. This is not merely a belt-tightening exercise; it is, for all intents and purposes, the dismantling of Vannevar Bush’s Compact, the end of the era of “big government”-funded Wissenschaft. Funding streams for basic research are dwindling, grant applications face increasingly long odds, and the financial precarity of academic careers deters the brightest minds. The human capital necessary for sustained, fundamental inquiry is beginning to wither.

Simultaneously, a warm, moisture-laden airmass is rapidly advancing: the astonishing rise of AI-based research tools. Powered by vast datasets and sophisticated algorithms, these tools promise to revolutionize every stage of the research process – from literature review and data analysis to hypothesis generation and the drafting of scholarly texts. As a recent New Yorker piece on AI and the humanities suggests, these AI engines can already generate deep research and coherent texts on virtually any subject, seemingly within moments. They offer the prospect of unprecedented efficiency, speed, and scale in the production of scholarly output.

The collision of these two epochal weather systems — the brutal cold front of academic defunding and the warm, expansive airmass of AI-based research tools — is creating an atmospheric instability unlike anything the world of scholarship has ever witnessed. Along the front where these forces meet, a series of powerful and unpredictable tornados are beginning to touch down, reshaping the terrain of knowledge production in real-time…(More)”.

Real-time prices, real results: comparing crowdsourcing, AI, and traditional data collection


Article by Julius Adewopo, Bo Andree, Zacharey Carmichael, Steve Penson, Kamwoo Lee: “Timely, high-quality food price data is essential for shock responsive decision-making. However, in many low- and middle-income countries, such data is often delayed, limited in geographic coverage, or unavailable due to operational constraints. Traditional price monitoring, which relies on structured surveys conducted by trained enumerators, is often constrained by challenges related to cost, frequency, and reach.

To help overcome these limitations, the World Bank launched the Real-Time Prices (RTP) data platform. This effort provides monthly price data using a machine learning framework. The models combine survey results with predictions derived from observations in nearby markets and related commodities. This approach helps fill gaps in local price data across a basket of goods, enabling real-time monitoring of inflation dynamics even when survey data is incomplete or irregular.

In parallel, new approaches—such as citizen-submitted (crowdsourced) data—are being explored to complement conventional data collection methods. These crowdsourced data were recently published in a Nature Scientific Data paper. While the adoption of these innovations is accelerating, maintaining trust requires rigorous validation.

newly published study in PLOS compares the two emerging methods with the traditional, enumerator-led gold standard, providing  new evidence that both crowdsourced and AI-imputed prices can serve as credible, timely alternatives to traditional ground-truth data collection—especially in contexts where conventional methods face limitations…(More)”.

Integrating Data Governance and Mental Health Equity: Insights from ‘Towards a Set of Universal Data Principles’


Article by Cindy Hansen: “This recent scholarly work, “Towards a Set of Universal Data Principles” by Steve MacFeely et al (2025), delves comprehensively into the expansive landscape of data management and governance. It is noteworthy to acknowledge the intricate processes through which humans collect, manage, and disseminate vast quantities of data. …To truly democratize digital mental healthcare, it’s crucial to empower individuals in their data journey. By focusing on Digital Self-Determination, people can participate in a transformative shift where control over personal data becomes a fundamental right, aligning with the proposed universal data principles. One can envision a world where mental health data, collected and used responsibly, contributes not only to personal well-being but also to the greater public good, echoing the need for data governance to serve society at large.

This concept of digital self-determination empowers individuals by ensuring they have the autonomy to decide who accesses their mental health data and how it’s utilized. Such empowerment is especially significant in the context of mental health, where data sensitivity is high, and privacy is paramount. Giving people the confidence to manage their data fosters trust and encourages them to engage more openly with digital health services, promoting a culture of trust which is a core element of the proposed data governance frameworks.

Holistic Research Canada’s Outcome Monitoring System honors this ethos, allowing individuals to control how their data is accessed, shared, and used while maintaining engagement with healthcare providers. With this system, people can actively participate in their mental health decisions, supported by data that offers transparency about their progress and prognoses, which is crucial in realizing the potential of data to serve both individual and broader societal interests.

Furthermore, this tool provides actionable insights into mental health journeys, promoting evidence-based practices, enhancing transparency, and ensuring that individuals’ rights are safeguarded throughout. These principles are vital to transforming individuals from passive subjects into active stewards of their data, consistent with the proposed principles of safeguarding data quality, integrity, and security…(More)”.

The Overlooked Importance of Data Reuse in AI Infrastructure


Essay by Oxford Insights and The Data Tank: “Employing data stewards and embedding responsible data reuse principles in the programme or ecosystem and within participating organisations is one of the pathways forward. Data stewards are proactive agents responsible for catalysing collaboration, tackling these challenges and embedding data reuse practices in their organisations. 

The role of Chief Data Officer for government agencies has become more common in recent years and we suggest the same needs to happen with the role of the Chief Data Steward. Chief Data Officers are mostly focused on internal data management and have a technical focus. With the changes in the data governance landscape, this profession needs to be reimagined and iterated. Embedded in both the demand and the supply sides of data, data stewards are proactive agents empowered to create public value by re-using data and data expertise. They are tasked to identify opportunities for productive cross-sectoral collaboration, and proactively request or enable functional access to data, insights, and expertise. 

One exception comes from New Zealand. The UN has released a report on the role of data stewards and National Statistical Offices (NSOs) in the new data ecosystem. This report provides many use-cases that can be adopted by governments seeking to establish such a role. In New Zealand, there is an appointed Government Chief Data Steward, who is in charge of setting the strategic direction for government’s data management, and focuses on data reuse altogether. 

Data stewards can play an important role in organisations leading data reuse programmes. Data stewards would be responsible for responding to the challenges with participation introduced above. 

A Data Steward’s role includes attracting participation for data reuse programmes by:

  • Demonstrating and communicating the value proposition of data reuse and collaborations, by engaging in partnerships and steering data reuse and sharing among data commons, cooperatives, or collaborative infrastructures. 
  • Developing responsible data lifecycle governance, and communicating insights to raise awareness and build trust among stakeholders; 

A Data Steward’s role includes maintaining and scaling participation for data reuse programmes by:

  • Maintaining trust by engaging with wider stakeholders and establishing clear engagement methodologies. For example, by embedding a social license, data stewards assure the digital self determination principle is embedded in data reuse processes. 
  • Fostering sustainable partnerships and collaborations around data, via developing business cases for data sharing and reuse, and measuring impact to build the societal case for data collaboration; and
  • Innovating in the sector by turning data to decision intelligence to ensure that insights derived from data are more effectively integrated into decision-making processes…(More)”.

From Answer-Giving to Question-Asking: Inverting the Socratic Method in the Age of AI


Blog by Anthea Roberts: “…If questioning is indeed becoming a premier cognitive skill in the AI age, how should education and professional development evolve? Here are some possibilities:

  1. Assessment Through Iterative Questioning: Rather than evaluating students solely on their answers, we might assess their ability to engage in sustained, productive questioning—their skill at probing, following up, identifying inconsistencies, and refining inquiries over multiple rounds. Can they navigate a complex problem through a series of well-crafted questions? Can they identify when an AI response contains subtle errors or omissions that require further exploration?
  2. Prompt Literacy as Core Curriculum: Just as reading and writing are foundational literacies, the ability to effectively prompt and question AI systems may become a basic skill taught from early education onward. This would include teaching students how to refine queries, test assumptions, and evaluate AI responses critically—recognizing that AI systems still hallucinate, contain biases from their training data, and have uneven performance across different domains.
  3. Socratic AI Interfaces: Future AI interfaces might be designed explicitly to encourage Socratic dialogue rather than one-sided Q&A. Instead of simply answering queries, these systems might respond with clarifying questions of their own: “It sounds like you’re asking about X—can you tell me more about your specific interest in this area?” This would model the kind of iterative exchange that characterizes productive human-human dialogue…(More)”.

The Future of Health Is Preventive — If We Get Data Governance Right


Article by Stefaan Verhulst: “After a long gestation period of three years, the European Health Data Space (EHDS) is now coming into effect across the European Union, potentially ushering in a new era of health data access, interoperability, and innovation. As this ambitious initiative enters the implementation phase, it brings with it the opportunity to fundamentally reshape how health systems across Europe operate. More generally, the EHDS contains important lessons (and some cautions) for the rest of the world, suggesting how a fragmented, reactive model of healthcare may transition to one that is more integrated, proactive, and prevention-oriented.

For too long, health systems–in the EU and around the world–have been built around treating diseases rather than preventing them. Now, we have an opportunity to change that paradigm. Data, and especially the advent of AI, give us the tools to predict and intervene before illness takes hold. Data offers the potential for a system that prioritizes prevention–one where individuals receive personalized guidance to stay healthy, policymakers access real-time evidence to address risks before they escalate, and epidemics are predicted weeks in advance, enabling proactive, rapid, and highly effective responses.

But to make AI-powered preventive health care a reality, and to make the EHDS a success, we need a new data governance approach, one that would include two key components:

  • The ability to reuse data collected for other purposes (e.g., mobility, retail sales, workplace trends) to improve health outcomes.
  • The ability to integrate different data sources–clinical records and electronic health records (EHRS), but also environmental, social, and economic data — to build a complete picture of health risks.

In what follows, we outline some critical aspects of this new governance framework, including responsible data access and reuse (so-called secondary use), moving beyond traditional consent models to a social license for reuse, data stewardship, and the need to prioritize high-impact applications. We conclude with some specific recommendations for the EHDS, built from the preceding general discussion about the role of AI and data in preventive health…(More)”.

Unlocking Public Value with Non-Traditional Data: Recent Use Cases and Emerging Trends


Article by Adam Zable and Stefaan Verhulst: “Non-Traditional Data (NTD)—digitally captured, mediated, or observed data such as mobile phone records, online transactions, or satellite imagery—is reshaping how we identify, understand, and respond to public interest challenges. As part of the Third Wave of Open Data, these often privately held datasets are being responsibly re-used through new governance models and cross-sector collaboration to generate public value at scale.

In our previous post, we shared emerging case studies across health, urban planning, the environment, and more. Several months later, the momentum has not only continued but diversified. New projects reaffirm NTD’s potential—especially when linked with traditional data, embedded in interdisciplinary research, and deployed in ways that are privacy-aware and impact-focused.

This update profiles recent initiatives that push the boundaries of what NTD can do. Together, they highlight the evolving domains where this type of data is helping to surface hidden inequities, improve decision-making, and build more responsive systems:

  • Financial Inclusion
  • Public Health and Well-Being
  • Socioeconomic Analysis
  • Transportation and Urban Mobility
  • Data Systems and Governance
  • Economic and Labor Dynamics
  • Digital Behavior and Communication…(More)”.