Why We Need to Audit Algorithms


James Guszcza, Iyad Rahwan, Will Bible, Manuel Cebrian and Vic Katyal at Harvard Business Review: “Algorithmic decision-making and artificial intelligence (AI) hold enormous potential and are likely to be economic blockbusters, but we worry that the hype has led many people to overlook the serious problems of introducing algorithms into business and society. Indeed, we see many succumbing to what Microsoft’s Kate Crawford calls “data fundamentalism” — the notion that massive datasets are repositories that yield reliable and objective truths, if only we can extract them using machine learning tools. A more nuanced view is needed. It is by now abundantly clear that, left unchecked, AI algorithms embedded in digital and social technologies can encode societal biasesaccelerate the spread of rumors and disinformation, amplify echo chambers of public opinion, hijack our attention, and even impair our mental wellbeing.

Ensuring that societal values are reflected in algorithms and AI technologies will require no less creativity, hard work, and innovation than developing the AI technologies themselves. We have a proposal for a good place to start: auditing. Companies have long been required to issue audited financial statements for the benefit of financial markets and other stakeholders. That’s because — like algorithms — companies’ internal operations appear as “black boxes” to those on the outside. This gives managers an informational advantage over the investing public which could be abused by unethical actors. Requiring managers to report periodically on their operations provides a check on that advantage. To bolster the trustworthiness of these reports, independent auditors are hired to provide reasonable assurance that the reports coming from the “black box” are free of material misstatement. Should we not subject societally impactful “black box” algorithms to comparable scrutiny?

Indeed, some forward thinking regulators are beginning to explore this possibility. For example, the EU’s General Data Protection Regulation (GDPR) requires that organizations be able to explain their algorithmic decisions. The city of New York recently assembled a task force to study possible biases in algorithmic decision systems. It is reasonable to anticipate that emerging regulations might be met with market pull for services involving algorithmic accountability.

So what might an algorithm auditing discipline look like? First, it should adopt a holistic perspective. Computer science and machine learning methods will be necessary, but likely not sufficient foundations for an algorithm auditing discipline. Strategic thinking, contextually informed professional judgment, communication, and the scientific method are also required.

As a result, algorithm auditing must be interdisciplinary in order for it to succeed….(More)”.

Nudging compliance in government: A human-centered approach to public sector program design


Article by Michelle Cho, Joshua Schoop, Timothy Murphy: “What are the biggest challenges facing government? Bureaucracy? Gridlock? A shrinking pool of resources?

Chances are compliance—when people act in accordance with preset rules, policies, and/or expectations—doesn’t top the list for many. Yet maybe it should. Compliance touches nearly every aspect of public policy implementation. Over the past 10 years, US government spending on compliance reached US$7.5 billion.

Even the most sophisticated and well-planned policies often require cooperation and input from real humans to be successful. From voluntary tax filing at the Internal Revenue Service (IRS) to reducing greenhouse emissions at the Environmental Protection Agency (EPA), to achieving the public policy outcomes decision-makers intend, compliance is fundamental.

Consider these examples of noncompliance and their costs:

  • Taxes. By law, the IRS requires all income-earning, eligible constituents to file and pay their owed taxes. Tax evasion—the illegal nonpayment or underpayment of tax—cost the federal government an average of US$458 billion per year between 2008 and 2010.3 The IRS believes it will recover just 11 percent of the amount lost in that time frame.
  • The environment. The incorrect disposal of recyclable materials has cost more than US$744 million in the state of Washington since 2009.4 The city audit in San Diego found that 76 percent of materials disposed of citywide are recyclable and estimates that those recyclables could power 181,000 households for a year or conserve 3.4 million barrels of oil.5

Those who fail to comply with these rules could face direct and indirect consequences, including penalties and even jail time. Yet a significant subset of the population still behaves in a noncompliant manner. Why?

Behavioral sciences offer some clues. Through the combination of psychology, economics, and neuroscience, behavioral sciences demonstrate that people do not always do what is asked of them, even when it seems in their best interest to do so. Often, people choose a noncompliant path because of one of these reasons: They are unaware of their improper behavior, they find the “right” choice is too complex to decipher, or they simply are not intrinsically motivated to make the compliant choice.

For any of these reasons, when a cognitive hurdle emerges, some people resort to noncompliant behavior. But these hurdles can be overcome. Policymakers can use these same behavioral insights to understand why noncompliance occurs and alternatively, employ behavioral-inspired tools to encourage compliant behavior in a more agile and resource-efficient fashion.

In this spirit, leaders can take a more human-centered approach to program design by using behavioral science lessons to develop policies and programs in a manner that can make compliance easier and more appealing. In our article, we discuss three common reasons behind noncompliance and how better, more human-centered design can help policymakers achieve more positive results….(More)”.

Waze-fed AI platform helps Las Vegas cut car crashes by almost 20%


Liam Tung at ZDNet: “An AI-led, road-safety pilot program between analytics firm Waycare and Nevada transportation agencies has helped reduce crashes along the busy I-15 in Las Vegas.

The Silicon Valley Waycare system uses data from connected cars, road cameras and apps like Waze to build an overview of a city’s roads and then shares that data with local authorities to improve road safety.

Waycare struck a deal with Google-owned Waze earlier this year to “enable cities to communicate back with drivers and warn of dangerous roads, hazards, and incidents ahead”. Waze’s crowdsourced data also feeds into Waycare’s traffic management system, offering more data for cities to manage traffic.

Waycare has now wrapped up a year-long pilot with the Regional Transportation Commission of Southern Nevada (RTC), Nevada Highway Patrol (NHP), and the Nevada Department of Transportation (NDOT).

RTC reports that Waycare helped the city reduce the number of primary crashes by 17 percent along the Interstate 15 Las Vegas.

Waycare’s data, as well as its predictive analytics, gave the city’s safety and traffic management agencies the ability to take preventative measures in high risk areas….(More)”.

Beijing to Judge Every Resident Based on Behavior by End of 2020


Bloomberg News: “China’s plan to judge each of its 1.3 billion people based on their social behavior is moving a step closer to reality, with Beijing set to adopt a lifelong points program by 2021 that assigns personalized ratings for each resident.

The capital city will pool data from several departments to reward and punish some 22 million citizens based on their actions and reputations by the end of 2020, according to a plan posted on the Beijing municipal government’s website on Monday. Those with better so-called social credit will get “green channel” benefits while those who violate laws will find life more difficult.

The Beijing project will improve blacklist systems so that those deemed untrustworthy will be “unable to move even a single step,” according to the government’s plan. Xinhua reported on the proposal Tuesday, while the report posted on the municipal government’s website is dated July 18.

China has long experimented with systems that grade its citizens, rewarding good behavior with streamlined services while punishing bad actions with restrictions and penalties. Critics say such moves are fraught with risks and could lead to systems that reduce humans to little more than a report card.

Ambitious Plan

Beijing’s efforts represent the most ambitious yet among more than a dozen cities that are moving ahead with similar programs.

Hangzhou rolled out its personal credit system earlier this year, rewarding “pro-social behaviors” such as volunteer work and blood donations while punishing those who violate traffic laws and charge under-the-table fees. By the end of May, people with bad credit in China have been blocked from booking more than 11 million flights and 4 million high-speed train trips, according to the National Development and Reform Commission.

According to the Beijing government’s plan, different agencies will link databases to get a more detailed picture of every resident’s interactions across a swathe of services….(More)”.

Using Artificial Intelligence to Promote Diversity


Paul R. Daugherty, H. James Wilson, and Rumman Chowdhury at MIT Sloan Management Review:  “Artificial intelligence has had some justifiably bad press recently. Some of the worst stories have been about systems that exhibit racial or gender bias in facial recognition applications or in evaluating people for jobs, loans, or other considerations. One program was routinely recommending longer prison sentences for blacks than for whites on the basis of the flawed use of recidivism data.

But what if instead of perpetuating harmful biases, AI helped us overcome them and make fairer decisions? That could eventually result in a more diverse and inclusive world. What if, for instance, intelligent machines could help organizations recognize all worthy job candidates by avoiding the usual hidden prejudices that derail applicants who don’t look or sound like those in power or who don’t have the “right” institutions listed on their résumés? What if software programs were able to account for the inequities that have limited the access of minorities to mortgages and other loans? In other words, what if our systems were taught to ignore data about race, gender, sexual orientation, and other characteristics that aren’t relevant to the decisions at hand?

AI can do all of this — with guidance from the human experts who create, train, and refine its systems. Specifically, the people working with the technology must do a much better job of building inclusion and diversity into AI design by using the right data to train AI systems to be inclusive and thinking about gender roles and diversity when developing bots and other applications that engage with the public.

Design for Inclusion

Software development remains the province of males — only about one-quarter of computer scientists in the United States are women— and minority racial groups, including blacks and Hispanics, are underrepresented in tech work, too.  Groups like Girls Who Code and AI4ALL have been founded to help close those gaps. Girls Who Code has reached almost 90,000 girls from various backgrounds in all 50 states,5 and AI4ALL specifically targets girls in minority communities….(More)”.

Recalculating GDP for the Facebook age


Gillian Tett at the Financial Times: How big is the impact of Facebook on our lives? That question has caused plenty of hand-wringing this year, as revelations have tumbled out about the political influence of Big Tech companies.

Economists are attempting to look at this question too — but in a different way. They have been quietly trying to calculate the impact of Facebook on gross domestic product data, ie to measure what our social-media addiction is doing to economic output….

Kevin Fox, an Australian economist, thinks there is. Working with four other economists, including Erik Brynjolfsson, a professor at MIT, he recently surveyed consumers to see what they would “pay” for Facebook in monetary terms, concluding conservatively that this was about $42 a month. Extrapolating this to the wider economy, he then calculated that the “value” of the social-media platform is equivalent to 0.11 per cent of US GDP. That might not sound transformational. But this week Fox presented the group’s findings at an IMF conference on the digital economy in Washington DC and argued that if Facebook activity had been counted as output in the GDP data, it would have raised the annual average US growth rate from 1.83 per cent to 1.91 per cent between 2003 and 2017. The number would rise further if you included other platforms – researchers believe that “maps” and WhatsApp are particularly important – or other services.  Take photographs.

Back in 2000, as the group points out, about 80 billion photos were taken each year at a cost of 50 cents a picture in camera and processing fees. This was recorded in GDP. Today, 1.6 trillion photos are taken each year, mostly on smartphones, for “free”, and excluded from that GDP data. What would happen if that was measured too, along with other types of digital services?

The bad news is that there is no consensus among economists on this point, and the debate is still at a very early stage. … A separate paper from Charles Hulten and Leonard Nakamura, economists at the University of Maryland and Philadelphia Fed respectively, explained another idea: a measurement known as “EGDP” or “Expanded GDP”, which incorporates “welfare” contributions from digital services. “The changes wrought by the digital revolution require changes to official statistics,” they said.

Yet another paper from Nakamura, co-written with Diane Coyle of Cambridge University, argued that we should also reconfigure the data to measure how we “spend” our time, rather than “just” how we spend our money. “To recapture welfare in the age of digitalisation, we need shadow prices, particularly of time,” they said. Meanwhile, US government number-crunchers have been trying to measure the value of “free” open-source software, such as R, Python, Julia and Java Script, concluding that if captured in statistics these would be worth about $3bn a year. Another team of government statisticians has been trying to value the data held by companies – this estimates, using one method, that Amazon’s data is currently worth $125bn, with a 35 per cent annual growth rate, while Google’s is worth $48bn, growing at 22 per cent each year. It is unlikely that these numbers – and methodologies – will become mainstream any time soon….(More)”.

NHS Pulls Out Of Data-Sharing Deal With Home Office Immigration Enforcers


Jasmin Gray at Huffington Post: “The NHS has pulled out of a controversial data-sharing arrangement with the Home Office which saw confidential patients’ details passed on to immigration enforcers.

In May, the government suspended the ‘memorandum of understanding’ agreement between the health service and the Home Office after MPs, doctors and health charities warned it was leaving seriously ill migrants too afraid to seek medical treatment. 

But on Tuesday, NHS Digital announced that it was cutting itself out of the agreement altogether. 

“NHS Digital has received a revised narrowed request from the Home Office and is discussing this request with them,” a spokesperson for the data-branch of the health service said, adding that they have “formally closed-out our participation” in the previous memorandum of understanding. 

The anxieties of “multiple stakeholder communities” to ensure the agreement made by the government was respected was taken into account in the decision, they added. 

Meanwhile, the Home Office confirmed it was working to agree a new deal with NHS Digital which would only allow it to make requests for data about migrants “facing deportation action because they have committed serious crimes, or where information necessary to protect someone’s welfare”. 

The move has been welcomed by campaigners, with Migrants’ Rights Network director Rita Chadra saying that many migrants had missed out on “the right to privacy and access to healthcare” because of the data-sharing mechanism….(More)”.

Reach is crowdsourcing street criminal incidents to reduce crime in Lima


Michael Krumholtz at LATAM Tech: “Unfortunately, in Latin America and many other places around the world, robberies are a part of urban life. Moisés Salazar of Lima has been a victim of petty crime in the streets, which is what led him to create Reach.

The application that markets itself as a kind of Waze for street crime alerts users through a map of incident reports or crimes that display visibly on your phone….

Salazar said that Reach helps users before, during and after incidents that could victimize them. That’s because the map allows users to avoid certain areas where a crime may have just happened or is being carried out.

In addition, there is a panic button that users can push if they find themselves in danger or in need of authorities. After the fact, that data then gets made public and can be analyzed by expert users or authorities wanting to see which incidents occur most commonly and where they occur.

Reach is very similar to the U.S. application Citizen, which is a crime avoidance tool used in major metropolitan areas in the U.S. like New York. That application alerts users to crime reports in their neighborhoods and gives them a forum to either record anything they witness or talk about it with other users….(More)”.

Odd Numbers: Algorithms alone can’t meaningfully hold other algorithms accountable


Frank Pasquale at Real Life Magazine: “Algorithms increasingly govern our social world, transforming data into scores or rankings that decide who gets credit, jobs, dates, policing, and much more. The field of “algorithmic accountability” has arisen to highlight the problems with such methods of classifying people, and it has great promise: Cutting-edge work in critical algorithm studies applies social theory to current events; law and policy experts seem to publish new articles daily on how artificial intelligence shapes our lives, and a growing community of researchers has developed a field known as “Fairness, Accuracy, and Transparency in Machine Learning.”

The social scientists, attorneys, and computer scientists promoting algorithmic accountability aspire to advance knowledge and promote justice. But what should such “accountability” more specifically consist of? Who will define it? At a two-day, interdisciplinary roundtable on AI ethics I recently attended, such questions featured prominently, and humanists, policy experts, and lawyers engaged in a free-wheeling discussion about topics ranging from robot arms races to computationally planned economies. But at the end of the event, an emissary from a group funded by Elon Musk and Peter Thiel among others pronounced our work useless. “You have no common methodology,” he informed us (apparently unaware that that’s the point of an interdisciplinary meeting). “We have a great deal of money to fund real research on AI ethics and policy”— which he thought of as dry, economistic modeling of competition and cooperation via technology — “but this is not the right group.” He then gratuitously lashed out at academics in attendance as “rent seekers,” largely because we had the temerity to advance distinctive disciplinary perspectives rather than fall in line with his research agenda.

Most corporate contacts and philanthrocapitalists are more polite, but their sense of what is realistic and what is utopian, what is worth studying and what is mere ideology, is strongly shaping algorithmic accountability research in both social science and computer science. This influence in the realm of ideas has powerful effects beyond it. Energy that could be put into better public transit systems is instead diverted to perfect the coding of self-driving cars. Anti-surveillance activism transmogrifies into proposals to improve facial recognition systems to better recognize all faces. To help payday-loan seekers, developers might design data-segmentation protocols to show them what personal information they should reveal to get a lower interest rate. But the idea that such self-monitoring and data curation can be a trap, disciplining the user in ever finer-grained ways, remains less explored. Trying to make these games fairer, the research elides the possibility of rejecting them altogether….(More)”.

From Code to Cure


David J. Craig at Columbia Magazine: “Armed with enormous amounts of clinical data, teams of computer scientists, statisticians, and physicians are rewriting the rules of medical research….

The deluge is upon us.

We are living in the age of big data, and with every link we click, every message we send, and every movement we make, we generate torrents of information.

In the past two years, the world has produced more than 90 percent of all the digital data that has ever been created. New technologies churn out an estimated 2.5 quintillion bytes per day. Data pours in from social media and cell phones, weather satellites and space telescopes, digital cameras and video feeds, medical records and library collections. Technologies monitor the number of steps we walk each day, the structural integrity of dams and bridges, and the barely perceptible tremors that indicate a person is developing Parkinson’s disease. These are the building blocks of our knowledge economy.

This tsunami of information is also providing opportunities to study the world in entirely new ways. Nowhere is this more evident than in medicine. Today, breakthroughs are being made not just in labs but on laptops, as biomedical researchers trained in mathematics, computer science, and statistics use powerful new analytic tools to glean insights from enormous data sets and help doctors prevent, treat, and cure disease.

“The medical field is going through a major period of transformation, and many of the changes are driven by information technology,” says George Hripcsak ’85PS,’00PH, a physician who chairs the Department of Biomedical Informatics at Columbia University Irving Medical Center (CUIMC). “Diagnostic techniques like genomic screening and high-resolution imaging are generating more raw data than we’ve ever handled before. At the same time, researchers are increasingly looking outside the confines of their own laboratories and clinics for data, because they recognize that by analyzing the huge streams of digital information now available online they can make discoveries that were never possible before.” …

Consider, for example, what the young computer scientist has been able to accomplish in recent years by mining an FDA database of prescription-drug side effects. The archive, which contains millions of reports of adverse drug reactions that physicians have observed in their patients, is continuously monitored by government scientists whose job it is to spot problems and pull drugs off the market if necessary. And yet by drilling down into the database with his own analytic tools, Tatonetti has found evidence that dozens of commonly prescribed drugs may interact in dangerous ways that have previously gone unnoticed. Among his most alarming findings: the antibiotic ceftriaxone, when taken with the heartburn medication lansoprazole, can trigger a type of heart arrhythmia called QT prolongation, which is known to cause otherwise healthy people to suddenly drop dead…(More)”