The great ‘unnewsed’ struggle to participate fully in democracy


Polly Curtis in the Financial Times: “…We once believed in utopian dreams about how a digital world would challenge power structures, democratise information and put power into the hands of the audience. Twenty years ago, I even wrote a university dissertation on how the internet was going to re-democratise society.

Two decades on, power structures have certainly been disrupted, but that utopianism has now crashed into a different reality: a growing and largely unrecognised crisis of the “unnewsed” population. The idea of the unnewsed stems from the concept of the “unbanked”, people who are dispossessed of the structures of society that depend on having a bank account.

Not having news does the same for you in a democratic system. It is a global problem. In parts of the developing world the digital divide is defined by the cost of data, often splitting between rural and urban, and in some places male control of mobile phones exacerbates the disenfranchisement of women. Even in the affluent west, where data is cheap and there are more sim cards than people, that digital divide exists. In the US the concept of “news deserts”, communities with no daily local news outlet, is well established.

Last week, the Reuters Digital News Report, an annual survey of the digital news habits of 75,000 people in 38 countries, reported that 32 per cent now actively avoid the news — avoidance is up 6 percentage points overall and 11 points in the UK. When I dug into other data on news consumption, from the UK communications regulator Ofcom, I found that those who claim not to follow any news are younger, less educated, have lower incomes and are less likely to be in work than those who do. We don’t like to talk about it, but news habits are closely aligned to something that looks very like class. How people get their news explains some of this — and demonstrates the class divide in access to information.

Research by Oxford university’s Reuters Institute last year found that there is greater social inequality in news consumption online than offline. Whereas on average we all use the same number of news sources offline, those on the lower end of the socio-economic scale use significantly fewer sources online. Even the popular tabloids, with their tradition of campaigning news for mass audiences, now have higher social class readers online than in print. Instead of democratising information, there is a risk that the digital revolution is exacerbating gaps in news habits….(More)”.

Study finds that a GPS outage would cost $1 billion per day


Eric Berger at Ars Technica: “….one of the most comprehensive studies on the subject has assessed the value of this GPS technology to the US economy and examined what effect a 30-day outage would have—whether it’s due to a severe space weather event or “nefarious activity by a bad actor.” The study was sponsored by the US government’s National Institutes of Standards and Technology and performed by a North Carolina-based research organization named RTI International.

Economic effect

As part of the analysis, researchers spoke to more than 200 experts in the use of GPS technology for various services, from agriculture to the positioning of offshore drilling rigs to location services for delivery drivers. (If they’d spoken to me, I’d have said the value of using GPS to navigate Los Angeles freeways and side streets was incalculable). The study covered a period from 1984, when the nascent GPS network was first opened to commercial use, through 2017. It found that GPS has generated an estimated $1.4 trillion in economic benefits during that time period.

The researchers found that the largest benefit, valued at $685.9 billion, came in the “telecommunications” category,  including improved reliability and bandwidth utilization for wireless networks. Telematics (efficiency gains, cost reductions, and environmental benefits through improved vehicle dispatch and navigation) ranked as the second most valuable category at $325 billion. Location-based services on smartphones was third, valued at $215 billion.

Notably, the value of GPS technology to the US economy is growing. According to the study, 90 percent of the technology’s financial impact has come since just 2010, or just 20 percent of the study period. Some sectors of the economy are only beginning to realize the value of GPS technology, or are identifying new uses for it, the report says, indicating that its value as a platform for innovation will continue to grow.

Outage impact

In the case of some adverse event leading to a widespread outage, the study estimates that the loss of GPS service would have a $1 billion per-day impact, although the authors acknowledge this is at best a rough estimate. It would likely be higher during the planting season of April and May, when farmers are highly reliant on GPS technology for information about their fields.

To assess the effect of an outage, the study looked at several different variables. Among them was “precision timing” that enables a number of wireless services, including the synchronization of traffic between carrier networks, wireless handoff between base stations, and billing management. Moreover, higher levels of precision timing enable higher bandwidth and provide access to more devices. (For example, the implementation of 4G LTE technology would have been impossible without GPS technology)….(More)”

Bringing Truth to the Internet


Article by Karen Kornbluh and Ellen P. Goodman: “The first volume of Special Counsel Robert Mueller’s report notes that “sweeping” and “systemic” social media disinformation was a key element of Russian interference in the 2016 election. No sooner were Mueller’s findings public than Twitter suspended a host of bots who had been promoting a “Russiagate hoax.”

Since at least 2016, conspiracy theories like Pizzagate and QAnon have flourished online and bled into mainstream debate. Earlier this year, a British member of Parliament called social media companies “accessories to radicalization” for their role in hosting and amplifying radical hate groups after the New Zealand mosque shooter cited and attempted to fuel more of these groups. In Myanmar, anti-Rohingya forces used Facebook to spread rumors that spurred ethnic cleansing, according to a UN special rapporteur. These platforms are vulnerable to those who aim to prey on intolerance, peer pressure, and social disaffection. Our democracies are being compromised. They work only if the information ecosystem has integrity—if it privileges truth and channels difference into nonviolent discourse. But the ecosystem is increasingly polluted.

Around the world, a growing sense of urgency about the need to address online radicalization is leading countries to embrace ever more draconian solutions: After the Easter bombings in Sri Lanka, the government shut down access to Facebook, WhatsApp, and other social media platforms. And a number of countries are considering adopting laws requiring social media companies to remove unlawful hate speech or face hefty penalties. According to Freedom House, “In the past year, at least 17 countries approved or proposed laws that would restrict online media in the name of fighting ‘fake news’ and online manipulation.”

The flaw with these censorious remedies is this: They focus on the content that the user sees—hate speech, violent videos, conspiracy theories—and not on the structural characteristics of social media design that create vulnerabilities. Content moderation requirements that cannot scale are not only doomed to be ineffective exercises in whack-a-mole, but they also create free expression concerns, by turning either governments or platforms into arbiters of acceptable speech. In some countries, such as Saudi Arabia, content moderation has become justification for shutting down dissident speech.

When countries pressure platforms to root out vaguely defined harmful content and disregard the design vulnerabilities that promote that content’s amplification, they are treating a symptom and ignoring the disease. The question isn’t “How do we moderate?” Instead, it is “How do we promote design change that optimizes for citizen control, transparency, and privacy online?”—exactly the values that the early Internet promised to embody….(More)”.

We Read 150 Privacy Policies. They Were an Incomprehensible Disaster.


Kevin Litman-Navarro at the New York Times: “….I analyzed the length and readability of privacy policies from nearly 150 popular websites and apps. Facebook’s privacy policy, for example, takes around 18 minutes to read in its entirety – slightly above average for the policies I tested….

Despite efforts like the General Data Protection Regulation to make policies more accessible, there seems to be an intractable tradeoff between a policy’s readability and length. Even policies that are shorter and easier to read can be impenetrable, given the amount of background knowledge required to understand how things like cookies and IP addresses play a role in data collection….

So what might a useful privacy policy look like?

Consumers don’t need a technical understanding of data collection processes in order to protect their personal information. Instead of explaining the excruciatingly complicated inner workings of the data marketplace, privacy policies should help people decide how they want to present themselves online. We tend to go on the internet privately – on our phones or at home – which gives the impression that our activities are also private. But, often, we’re more visible than ever.

A good privacy policy would help users understand how exposed they are: Something as simple as a list of companies that might purchase and use your personal information could go a long way towards setting a new bar for privacy-conscious behavior. For example, if you know that your weather app is constantly tracking your whereabouts and selling your location data as marketing research, you might want to turn off your location services entirely, or find a new app.

Until we reshape privacy policies to meet our needs — or we find a suitable replacement — it’s probably best to act with one rule in mind. To be clear and concise: Someone’s always watching….(More)”.

We should extend EU bank data sharing to all sectors


Carlos Torres Vila in the Financial Times: “Data is now driving the global economy — just look at the list of the world’s most valuable companies. They collect and exploit the information that users generate through billions of online interactions taking place every day. 


But companies are hoarding data too, preventing others, including the users to whom the data relates, from accessing and using it. This is true of traditional groups such as banks, telcos and utilities, as well as the large digital enterprises that rely on “proprietary” data. 
Global and national regulators must address this problem by forcing companies to give users an easy way to share their own data, if they so choose. This is the logical consequence of personal data belonging to users. There is also the potential for enormous socio-economic benefits if we can create consent-based free data flows. 
We need data-sharing across companies in all sectors in a real time, standardised way — not at a speed and in a format dictated by the companies that stockpile user data. These new rules should apply to all electronic data generated by users, whether provided directly or observed during their online interactions with any provider, across geographic borders and in any sector. This could include everything from geolocation history and electricity consumption to recent web searches, pension information or even most recently played songs. 

This won’t be easy to achieve in practice, but the good news is that we already have a framework that could be the model for a broader solution. The UK’s Open Banking system provides a tantalising glimpse of what may be possible. In Europe, the regulation known as the Payment Services Directive 2 allows banking customers to share data about their transactions with multiple providers via secure, structured IT interfaces. We are already seeing this unlock new business models and drive competition in digital financial services. But these rules do not go far enough — they only apply to payments history, and that isn’t enough to push forward a data-driven economic revolution across other sectors of the economy. 

We need a global framework with common rules across regions and sectors. This has already happened in financial services: after the 2008 financial crisis, the G20 strengthened global banking standards and created the Financial Stability Board. The rules, while not perfect, have delivered uniformity which has strengthened the system. 

We need a similar global push for common rules on the use of data. While it will be difficult to achieve consensus on data, and undoubtedly more difficult still to implement and enforce it, I believe that now is the time to decide what we want. The involvement of the G20 in setting up global standards will be essential to realising the potential that data has to deliver a better world for all of us. There will be complaints about the cost of implementation. I know first hand how expensive it can be to simultaneously open up and protect sensitive core systems. 

The alternative is siloed data that holds back innovation. There will also be justified concerns that easier data sharing could lead to new user risks. Security must be a non-negotiable principle in designing intercompany interfaces and protecting access to sensitive data. But Open Banking shows that these challenges are resolvable. …(More)”.

France Bans Judge Analytics, 5 Years In Prison For Rule Breakers


Artificial Lawyer: “In a startling intervention that seeks to limit the emerging litigation analytics and prediction sector, the French Government has banned the publication of statistical information about judges’ decisions – with a five year prison sentence set as the maximum punishment for anyone who breaks the new law.

Owners of legal tech companies focused on litigation analytics are the most likely to suffer from this new measure.

The new law, encoded in Article 33 of the Justice Reform Act, is aimed at preventing anyone – but especially legal tech companies focused on litigation prediction and analytics – from publicly revealing the pattern of judges’ behaviour in relation to court decisions.

A key passage of the new law states:

‘The identity data of magistrates and members of the judiciary cannot be reused with the purpose or effect of evaluating, analysing, comparing or predicting their actual or alleged professional practices.’ *

As far as Artificial Lawyer understands, this is the very first example of such a ban anywhere in the world.

Insiders in France told Artificial Lawyer that the new law is a direct result of an earlier effort to make all case law easily accessible to the general public, which was seen at the time as improving access to justice and a big step forward for transparency in the justice sector.

However, judges in France had not reckoned on NLP and machine learning companies taking the public data and using it to model how certain judges behave in relation to particular types of legal matter or argument, or how they compare to other judges.

In short, they didn’t like how the pattern of their decisions – now relatively easy to model – were potentially open for all to see.

Unlike in the US and the UK, where judges appear to have accepted the fait accompli of legal AI companies analysing their decisions in extreme detail and then creating models as to how they may behave in the future, French judges have decided to stamp it out….(More)”.

Journalism Initiative Crowdsources Feedback on Failed Foreign Aid Projects


Abigail Higgins at SSIR: “It isn’t unusual that a girl raped in northeastern Kenya would be ignored by law enforcement. But for Mary, whose name has been changed to protect her identity, it should have been different—NGOs had established a hotline to report sexual violence just a few years earlier to help girls like her get justice. Even though the hotline was backed by major aid institutions like Mercy Corps and the British government, calls to it regularly went unanswered.

“That was the story that really affected me. It touched me in terms of how aid failures could impact someone,” says Anthony Langat, a Nairobi-based reporter who investigated the hotline as part of a citizen journalism initiative called What Went Wrong? that examines failed foreign aid projects.

Over six months in 2018, What Went Wrong? collected 142 reports of failed aid projects in Kenya, each submitted over the phone or via social media by the very people the project was supposed to benefit. It’s a move intended to help upend the way foreign aid is disbursed and debated. Although aid organizations spend significant time evaluating whether or not aid works, beneficiaries are often excluded from that process.

“There’s a serious power imbalance,” says Peter DiCampo, the photojournalist behind the initiative. “The people receiving foreign aid generally do not have much say. They don’t get to choose which intervention they want, which one would feel most beneficial for them. Our goal is to help these conversations happen … to put power into the hands of the people receiving foreign aid.”

What Went Wrong? documented eight failed projects in an investigative series published by Devex in March. In Kibera, one of Kenya’s largest slums, public restrooms meant to improve sanitation failed to connect to water and sewage infrastructure and were later repurposed as churches. In another story, the World Bank and local thugs struggled for control over the slum’s electrical grid….(More)”

Here’s a prediction: In the future, predictions will only get worse


Allison Schrager at Quartz: “Forecasts rely on data from the past, and while we now have better data than ever—and better techniques and technology with which to measure them—when it comes to forecasting, in many ways, data has never been more useless. And as data become more integral to our lives and the technology we rely upon, we must take a harder look at the past before we assume it tells us anything about the future.

To some extent, the weaknesses of data has always existed. Data are, by definition, information about what has happened in the past. Because populations and technology are constantly changing, they alter how we respond to incentives, policy, opportunities available to us, and even social cues. This undermines the accuracy of everything we try to forecast: elections, financial markets, even how long it will take to get to the airport.

But there is reason to believe we are experiencing more change than before. The economy is undergoing a major structural change by becoming more globally integrated, which increases some risks while reducing others, while technology has changed how we transact and communicate. I’ve written before how it’s now impossible for the movie industry to forecast hit films. Review-aggregation site Rotten Tomatoes undermines traditional marketing plans and the rise of the Chinese market means film makers must account for different tastes. Meanwhile streaming has changed how movies are consumed and who watches them. All these changes mean data from 10, or even five, years ago tell producers almost nothing about movie-going today.

We are in the age of big data that offers to promise of more accurate predictions. But it seems in some of the most critical aspects of our lives, data has never been more wrong….(More)”.

How Can We Overcome the Challenge of Biased and Incomplete Data?


Knowledge@Wharton: “Data analytics and artificial intelligence are transforming our lives. Be it in health care, in banking and financial services, or in times of humanitarian crises — data determine the way decisions are made. But often, the way data is collected and measured can result in biased and incomplete information, and this can significantly impact outcomes.  

In a conversation with Knowledge@Wharton at the SWIFT Institute Conference on the Impact of Artificial Intelligence and Machine Learning in the Financial Services Industry, Alexandra Olteanu, a post-doctoral researcher at Microsoft Research, U.S. and Canada, discussed the ethical and people considerations in data collection and artificial intelligence and how we can work towards removing the biases….

….Knowledge@Wharton: Bias is a big issue when you’re dealing with humanitarian crises, because it can influence who gets help and who doesn’t. When you translate that into the business world, especially in financial services, what implications do you see for algorithmic bias? What might be some of the consequences?

Olteanu: A good example is from a new law in the New York state according to which insurance companies can now use social media to decide the level for your premiums. But, they could in fact end up using incomplete information. For instance, you might be buying your vegetables from the supermarket or a farmer’s market, but these retailers might not be tracking you on social media. So nobody knows that you are eating vegetables. On the other hand, a bakery that you visit might post something when you buy from there. Based on this, the insurance companies may conclude that you only eat cookies all the time. This shows how even incomplete data can affect you….(More)”.

107 Years Later, The Titanic Sinking Helps Train Problem-Solving AI


Kiona N. Smith at Forbes: “What could the 107-year-old tragedy of the Titanic possibly have to do with modern problems like sustainable agriculture, human trafficking, or health insurance premiums? Data turns out to be the common thread. The modern world, for better or or worse, increasingly turns to algorithms to look for patterns in the data and and make predictions based on those patterns. And the basic methods are the same whether the question they’re trying to answer is “Would this person survive the Titanic sinking?” or “What are the most likely routes for human trafficking?”

An Enduring Problem

Predicting survival at sea based on the Titanic dataset is a standard practice problem for aspiring data scientists and programmers. Here’s the basic challenge: feed your algorithm a portion of the Titanic passenger list, which includes some basic variables describing each passenger and their fate. From that data, the algorithm (if you’ve programmed it well) should be able to draw some conclusions about which variables made a person more likely to live or die on that cold April night in 1912. To test its success, you then give the algorithm the rest of the passenger list (minus the outcomes) and see how well it predicts their fates.

Online communities like Kaggle.com have held competitions to see who can develop the algorithm that predicts survival most accurately, and it’s also a common problem presented to university classes. The passenger list is big enough to be useful, but small enough to be manageable for beginners. There’s a simple set out of outcomes — life or death — and around a dozen variables to work with, so the problem is simple enough for beginners to tackle but just complex enough to be interesting. And because the Titanic’s story is so famous, even more than a century later, the problem still resonates.

“It’s interesting to see that even in such a simple problem as the Titanic, there are nuggets,” said Sagie Davidovich, Co-Founder & CEO of SparkBeyond, who used the Titanic problem as an early test for SparkBeyond’s AI platform and still uses it as a way to demonstrate the technology to prospective customers….(More)”.