Once Upon a Crime: Towards Crime Prediction from Demographics and Mobile Data


Paper by Andrey Bogomolov, Bruno Lepri, Jacopo Staiano, Nuria Oliver, Fabio Pianesi, and Alex Pentland: “In this paper, we present a novel approach to predict crime in a geographic space from multiple data sources, in particular mobile phone and demographic data. The main contribution of the proposed approach lies in using aggregated and anonymized human behavioral data derived from mobile network activity to tackle the crime prediction problem. While previous research efforts have used either background historical knowledge or offenders’ profiling, our findings support the hypothesis that aggregated human behavioral data captured from the mobile network infrastructure, in combination with basic demographic information, can be used to predict crime. In our experimental results with real crime data from London we obtain an accuracy of almost 70% when predicting whether a specific area in the city will be a crime hotspot or not. Moreover, we provide a discussion of the implications of our findings for data-driven crime analysis…(More)”.

Determinants of behaviour and their efficacy as targets of behavioural change interventions


Paper by Dolores Albarracín, Bita Fayaz-Farkhad & Javier A. Granados Samayoa: “Unprecedented social, environmental, political and economic challenges — such as pandemics and epidemics, environmental degradation and community violence — require taking stock of how to promote behaviours that benefit individuals and society at large. In this Review, we synthesize multidisciplinary meta-analyses of the individual and social-structural determinants of behaviour (for example, beliefs and norms, respectively) and the efficacy of behavioural change interventions that target them. We find that, across domains, interventions designed to change individual determinants can be ordered by increasing impact as those targeting knowledge, general skills, general attitudes, beliefs, emotions, behavioural skills, behavioural attitudes and habits. Interventions designed to change social-structural determinants can be ordered by increasing impact as legal and administrative sanctions; programmes that increase institutional trustworthiness; interventions to change injunctive norms; monitors and reminders; descriptive norm interventions; material incentives; social support provision; and policies that increase access to a particular behaviour. We find similar patterns for health and environmental behavioural change specifically. Thus, policymakers should focus on interventions that enable individuals to circumvent obstacles to enacting desirable behaviours rather than targeting salient but ineffective determinants of behaviour such as knowledge and beliefs…(More)”

Innovation amnesia: Technology as a substitute for politics


Paper by Nathan Schneider: “…outlines a theory of amnesia in the face of innovation: when apparent technological innovations occasion the disregard of preexisting cultural, legal, and infrastructural norms. Innovation amnesia depends on cultural patterns that appear to be increasingly widespread: the valorization of technological innovation and the sensation of limited political space for reforming social arrangements. The resulting amnesia is by default an extension of existing structural inequalities. If innovations arise through deploying concentrated private wealth, the amnesia will likely target institutions that facilitate collective power among less powerful people. Up and down social hierarchies, however, achieving amnesia through innovation can bear irresistible allure. When other paths for structural change become mired in inertia or gridlock, amnesia may appear to be the only available pathway to reform. The purpose of a theory of amnesia is to assist affected communities in noticing it when it occurs and wielding it to their advantage, particularly through mobilizing self-governance around moments of innovation…(More)”.

The Rise of AI-Generated Content in Wikipedia


Paper by Creston Brooks, Samuel Eggert, and Denis Peskoff: “The rise of AI-generated content in popular information sources raises significant concerns about accountability, accuracy, and bias amplification. Beyond directly impacting consumers, the widespread presence of this content poses questions for the long-term viability of training language models on vast internet sweeps. We use GPTZero, a proprietary AI detector, and Binoculars, an open-source alternative, to establish lower bounds on the presence of AI-generated content in recently created Wikipedia pages. Both detectors reveal a marked increase in AI-generated content in recent pages compared to those from before the release of GPT-3.5. With thresholds calibrated to achieve a 1% false positive rate on pre-GPT-3.5 articles, detectors flag over 5% of newly created English Wikipedia articles as AI-generated, with lower percentages for German, French, and Italian articles. Flagged Wikipedia articles are typically of lower quality and are often self-promotional or partial towards a specific viewpoint on controversial topics…(More)”

AI and Data Science for Public Policy


Introduction to Special Issue by Kenneth Benoit: “Artificial intelligence (AI) and data science are reshaping public policy by enabling more data-driven, predictive, and responsive governance, while at the same time producing profound changes in knowledge production and education in the social and policy sciences. These advancements come with ethical and epistemological challenges surrounding issues of bias, transparency, privacy, and accountability. This special issue explores the opportunities and risks of integrating AI into public policy, offering theoretical frameworks and empirical analyses to help policymakers navigate these complexities. The contributions explore how AI can enhance decision-making in areas such as healthcare, justice, and public services, while emphasising the need for fairness, human judgment, and democratic accountability. The issue provides a roadmap for harnessing AI’s potential responsibly, ensuring it serves the public good and upholds democratic values…(More)”.

Conversational Swarms of Humans and AI Agents enable Hybrid Collaborative Decision-making


Paper by Louis Rosenberg et al: “Conversational Swarm Intelligence (CSI) is an AI-powered communication and collaboration technology that allows large, networked groups (of potentially unlimited size) to hold thoughtful conversational deliberations in real-time. Inspired by the efficient decision-making dynamics of fish schools, CSI divides a human population into a set of small subgroups connected by AI agents. This enables the full group to hold a unified conversation. In this study, groups of 25 participants were tasked with selecting a roster of players in a real Fantasy Baseball contest. A total of 10 trials were run using CSI. In half the trials, each subgroup was augmented with a fact-providing AI agent referred to herein as an Infobot. The Infobot was loaded with a wide range of MLB statistics. The human participants could query the Infobot the same way they would query other persons in their subgroup. Results show that when using CSI, the 25-person groups outperformed 72% of individually surveyed participants and showed significant intelligence amplification versus the mean score (p=0.016). The CSI-enabled groups also significantly outperformed the most popular picks across the collected surveys for each daily contest (p<0.001). The CSI sessions that used Infobots scored slightly higher than those that did not, but it was not statistically significant in this study. That said, 85% of participants agreed with the statement ‘Our decisions were stronger because of information provided by the Infobot’ and only 4% disagreed. In addition, deliberations that used Infobots showed significantly less variance (p=0.039) in conversational content across members. This suggests that Infobots promoted more balanced discussions in which fewer members dominated the dialog. This may be because the infobot enabled participants to confidently express opinions with the support of factual data…(More)”.

Effective Data Stewardship in Higher Education: Skills, Competences, and the Emerging Role of Open Data Stewards


Paper by Panos Fitsilis et al: “The significance of open data in higher education stems from the changing tendencies towards open science, and open research in higher education encourages new ways of making scientific inquiry more transparent, collaborative and accessible. This study focuses on the critical role of open data stewards in this transition, essential for managing and disseminating research data effectively in universities, while it also highlights the increasing demand for structured training and professional policies for data stewards in academic settings. Building upon this context, the paper investigates the essential skills and competences required for effective data stewardship in higher education institutions by elaborating on a critical literature review, coupled with practical engagement in open data stewardship at universities, provided insights into the roles and responsibilities of data stewards. In response to these identified needs, the paper proposes a structured training framework and comprehensive curriculum for data stewardship, a direct response to the gaps identified in the literature. It addresses five key competence categories for open data stewards, aligning them with current trends and essential skills and knowledge in the field. By advocating for a structured approach to data stewardship education, this work sets the foundation for improved data management in universities and serves as a critical step towards professionalizing the role of data stewards in higher education. The emphasis on the role of open data stewards is expected to advance data accessibility and sharing practices, fostering increased transparency, collaboration, and innovation in academic research. This approach contributes to the evolution of universities into open ecosystems, where there is free flow of data for global education and research advancement…(More)”.

Quality Assessment of Volunteered Geographic Information


Paper by Donia Nciri et al: “Traditionally, government and national mapping agencies have been a primary provider of authoritative geospatial information. Today, with the exponential proliferation of Information and Communication Technologies or ICTs (such as GPS, mobile mapping and geo-localized web applications, social media), any user becomes able to produce geospatial information. This participatory production of geographical data gives birth to the concept of Volunteered Geographic Information (VGI). This phenomenon has greatly contributed to the production of huge amounts of heterogeneous data (structured data, textual documents, images, videos, etc.). It has emerged as a potential source of geographic information in many application areas. Despite the various advantages associated with it, this information lacks often quality assurance, since it is provided by diverse user profiles. To address this issue, numerous research studies have been proposed to assess VGI quality in order to help extract relevant content. This work attempts to provide an overall review of VGI quality assessment methods over the last decade. It also investigates varied quality assessment attributes adopted in recent works. Moreover, it presents a classification that forms a basis for future research. Finally, it discusses in detail the relevance and the main limitations of existing approaches and outlines some guidelines for future developments…(More)”.

When combinations of humans and AI are useful: A systematic review and meta-analysis


Paper by Michelle Vaccaro, Abdullah Almaatouq & Thomas Malone: “Inspired by the increasing use of artificial intelligence (AI) to augment humans, researchers have studied human–AI systems involving different tasks, systems and populations. Despite such a large body of work, we lack a broad conceptual understanding of when combinations of humans and AI are better than either alone. Here we addressed this question by conducting a preregistered systematic review and meta-analysis of 106 experimental studies reporting 370 effect sizes. We searched an interdisciplinary set of databases (the Association for Computing Machinery Digital Library, the Web of Science and the Association for Information Systems eLibrary) for studies published between 1 January 2020 and 30 June 2023. Each study was required to include an original human-participants experiment that evaluated the performance of humans alone, AI alone and human–AI combinations. First, we found that, on average, human–AI combinations performed significantly worse than the best of humans or AI alone (Hedges’ g = −0.23; 95% confidence interval, −0.39 to −0.07). Second, we found performance losses in tasks that involved making decisions and significantly greater gains in tasks that involved creating content. Finally, when humans outperformed AI alone, we found performance gains in the combination, but when AI outperformed humans alone, we found losses. Limitations of the evidence assessed here include possible publication bias and variations in the study designs analysed. Overall, these findings highlight the heterogeneity of the effects of human–AI collaboration and point to promising avenues for improving human–AI systems…(More)”.

Open government data and self-efficacy: The empirical evidence of micro foundation via survey experiments


Paper by Kuang-Ting Tai, Pallavi Awasthi, and Ivan P. Lee: “Research on the potential impacts of government openness and open government data is not new. However, empirical evidence regarding the micro-level impact, which can validate macro-level theories, has been particularly limited. Grounded in social cognitive theory, this study contributes to the literature by empirically examining how the dissemination of government information in an open data format can influence individuals’ perceptions of self-efficacy, a key predictor of public participation. Based on two rounds of online survey experiments conducted in the U.S., the findings reveal that exposure to open government data is associated with decreased perceived self-efficacy, resulting in lower confidence in participating in public affairs. This result, while contrary to optimistic assumptions, aligns with some other empirical studies and highlights the need to reconsider the format for disseminating government information. The policy implications suggest further calibration of open data applications to target professional and skilled individuals. This study underscores the importance of experiment replication and theory development as key components of future research agendas…(More)”.