Paper by Tzuhao Chen, Mila Gascó-Hernandez, and Marc Esteve: “Although the use of artificial intelligence (AI) chatbots in public organizations has increased in recent years, three crucial gaps remain unresolved. First, little empirical evidence has been produced to examine the deployment of chatbots in government contexts. Second, existing research does not distinguish clearly between the drivers of adoption and the determinants of success and, therefore, between the stages of adoption and implementation. Third, most current research does not use a multidimensional perspective to understand the adoption and implementation of AI in government organizations. Our study addresses these gaps by exploring the following question: what determinants facilitate or impede the adoption and implementation of chatbots in the public sector? We answer this question by analyzing 22 state agencies across the U.S.A. that use chatbots. Our analysis identifies ease of use and relative advantage of chatbots, leadership and innovative culture, external shock, and individual past experiences as the main drivers of the decisions to adopt chatbots. Further, it shows that different types of determinants (such as knowledge-base creation and maintenance, technology skills and system crashes, human and financial resources, cross-agency interaction and communication, confidentiality and safety rules and regulations, and citizens’ expectations, and the COVID-19 crisis) impact differently the adoption and implementation processes and, therefore, determine the success of chatbots in a different manner. Future research could focus on the interaction among different types of determinants for both adoption and implementation, as well as on the role of specific stakeholders, such as IT vendors…(More)”.
Governing the informed city: examining local government strategies for information production, consumption and knowledge sharing across ten cities
Paper by Katrien Steenmans et al: “Cities are more and more embedded in information flows, and their policies are increasingly called assessment frameworks to understand the impact of the systems of knowledge underpinning local government. Encouraging a more systemic view on the data politics of the urban age, this paper investigates the information ecosystem in which local governments are embedded. Seeking to go beyond the ‘smart city’ paradigm into a more overt discussion of the structures of information-driven urban governance, it offers a preliminary assessment across ten case studies (Barcelona, Bogotá, Chicago, London, Medellín, Melbourne, Mexico City, Mumbai, Seoul and Warsaw). It illustrates how both internal and external actors to local government are deeply involved throughout information mobilization processes, though in different capacities and to different extents, and how the impact of many of these actors is still not commonly assessed and/or leveraged by cities. Seeking to encourage more systematic analysis the governance of knowledge collection, dissemination, analysis, and use in cities, the paper advocates for an ‘ecosystem’ view of the emerging ‘informed cities’ paradigm…(More)”.
Making AI Less “Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models
Paper by Pengfei Li, Jianyi Yang, Mohammad A. Islam, Shaolei Ren: “The growing carbon footprint of artificial intelligence (AI) models, especially large ones such as GPT-3 and GPT-4, has been undergoing public scrutiny. Unfortunately, however, the equally important and enormous water footprint of AI models has remained under the radar. For example, training GPT-3 in Microsoft’s state-of-the-art U.S. data centers can directly consume 700,000 liters of clean freshwater (enough for producing 370 BMW cars or 320 Tesla electric vehicles) and the water consumption would have been tripled if training were done in Microsoft’s Asian data centers, but such information has been kept as a secret. This is extremely concerning, as freshwater scarcity has become one of the most pressing challenges shared by all of us in the wake of the rapidly growing population, depleting water resources, and aging water infrastructures. To respond to the global water challenges, AI models can, and also should, take social responsibility and lead by example by addressing their own water footprint. In this paper, we provide a principled methodology to estimate fine-grained water footprint of AI models, and also discuss the unique spatial-temporal diversities of AI models’ runtime water efficiency. Finally, we highlight the necessity of holistically addressing water footprint along with carbon footprint to enable truly sustainable AI…(More)”.
Incentivising open ecological data using blockchain technology
Paper by Robert John Lewis, Kjell-Erik Marstein & John-Arvid Grytnes: “Mindsets concerning data as proprietary are common, especially where data production is resource intensive. Fears of competing research in concert with loss of exclusivity to hard earned data are pervasive. This is for good reason given that current reward structures in academia focus overwhelmingly on journal prestige and high publication counts, and not accredited publication of open datasets. And, then there exists reluctance of researchers to cede control to centralised repositories, citing concern over the lack of trust and transparency over the way complex data are used and interpreted.
To begin to resolve these cultural and sociological constraints to open data sharing, we as a community must recognise that top-down pressure from policy alone is unlikely to improve the state of ecological data availability and accessibility. Open data policy is almost ubiquitous (e.g. the Joint Data Archiving Policy, (JDAP) http://datadryad.org/pages/jdap) and while cyber-infrastructures are becoming increasingly extensive, most have coevolved with sub-disciplines utilising high velocity, born digital data (e.g. remote sensing, automated sensor networks and citizen science). Consequently, they do not always offer technological solutions that ease data collation, standardisation, management and analytics, nor provide a good fit culturally to research communities working among the long-tail of ecological science, i.e. science conducted by many individual researchers/teams over limited spatial and temporal scales. Given the majority of scientific funding is spent on this type of dispersed research, there is a surprisingly large disconnect between the vast majority of ecological science and the cyber-infrastructures to support open data mandates, offering a possible explanation to why primary ecological data are reportedly difficult to find…(More)”.
Scaling deep through transformative learning in public sector innovation labs – experiences from Vancouver and Auckland
Article by Lindsay Cole & Penny Hagen: “…explores scaling deep through transformative learning in Public Sector Innovation Labs (PSI labs) as a pathway to increase the impacts of their work. Using literature review and participatory action research with two PSI labs in Vancouver and Auckland, we provide descriptions of how they enact transformative learning and scaling deep. A shared ambition for transformative innovation towards social and ecological wellbeing sparked independent moves towards scaling deep and transformative learning which, when compared, offer fruitful insights to researchers and practitioners. The article includes a PSI lab typology and six moves to practice transformative learning and scaling deep…(More)”.
Protests
Paper by Davide Cantoni, Andrew Kao, David Y. Yang & Noam Yuchtman: “Citizens have long taken to the streets to demand change, expressing political views that may otherwise be suppressed. Protests have produced change at local, national, and international scales, including spectacular moments of political and social transformation. We document five new empirical patterns describing 1.2 million protest events across 218 countries between 1980 and 2020. First, autocracies and weak democracies experienced a trend break in protests during the Arab Spring. Second, protest movements also rose in importance following the Arab Spring. Third, protest movements geographically diffuse over time, spiking to their peak, before falling off. Fourth, a country’s year-to-year economic performance is not strongly correlated with protests; individual values are predictive of protest participation. Fifth, the US, China, and Russia are the most over-represented countries by their share of academic studies. We discuss each pattern’s connections to the existing literature and anticipate paths for future work.Citizens have long taken to the streets to demand change, expressing political views that may otherwise be suppressed. Protests have produced change at local, national, and international scales, including spectacular moments of political and social transformation. We document five new empirical patterns describing 1.2 million protest events across 218 countries between 1980 and 2020. First, autocracies and weak democracies experienced a trend break in protests during the Arab Spring. Second, protest movements also rose in importance following the Arab Spring. Third, protest movements geographically diffuse over time, spiking to their peak, before falling off. Fourth, a country’s year-to-year economic performance is not strongly correlated with protests; individual values are predictive of protest participation. Fifth, the US, China, and Russia are the most over-represented countries by their share of academic studies. We discuss each pattern’s connections to the existing literature and anticipate paths for future work.Citizens have long taken to the streets to demand change, expressing political views that may otherwise be suppressed. Protests have produced change at local, national, and international scales, including spectacular moments of political and social transformation. We document five new empirical patterns describing 1.2 million protest events across 218 countries between 1980 and 2020. First, autocracies and weak democracies experienced a trend break in protests during the Arab Spring. Second, protest movements also rose in importance following the Arab Spring. Third, protest movements geographically diffuse over time, spiking to their peak, before falling off. Fourth, a country’s year-to-year economic performance is not strongly correlated with protests; individual values are predictive of protest participation. Fifth, the US, China, and Russia are the most over-represented countries by their share of academic studies. We discuss each pattern’s connections to the existing literature and anticipate paths for future work…(More)”.
City/Science Intersections: A Scoping Review of Science for Policy in Urban Contexts
Paper by Gabriela Manrique Rueda et al: “Science is essential for cities to understand and intervene on the increasing global risks. However, challenges in effectively utilizing scientific knowledge in decision-making processes limit cities’ abilities to address these risks. This scoping review examines the development of science for urban policy, exploring the contextual factors, organizational structures, and mechanisms that facilitate or hinder the integration of science and policy. It investigates the challenges faced and the outcomes achieved. The findings reveal that science has gained influence in United Nations (UN) policy discourses, leading to the expansion of international, regional, and national networks connecting science and policy. Boundary-spanning organizations and collaborative research initiatives with stakeholders have emerged, creating platforms for dialogue, knowledge sharing, and experimentation. However, cultural differences between the science and policy realms impede the effective utilization of scientific knowledge in decision-making. While efforts are being made to develop methods and tools for knowledge co-production, translation, and mobilization, more attention is needed to establish science-for-policy organizational structures and address power imbalances in research processes that give rise to ethical challenges…(More)”.
How Will the State Think With the Assistance of ChatGPT? The Case of Customs as an Example of Generative Artificial Intelligence in Public Administrations
Paper by Thomas Cantens: “…discusses the implications of Generative Artificial Intelligence (GAI) in public administrations and the specific questions it raises compared to specialized and « numerical » AI, based on the example of Customs and the experience of the World Customs Organization in the field of AI and data strategy implementation in Member countries.
At the organizational level, the advantages of GAI include cost reduction through internalization of tasks, uniformity and correctness of administrative language, access to broad knowledge, and potential paradigm shifts in fraud detection. At this level, the paper highlights three facts that distinguish GAI from specialized AI : i) GAI is less associated to decision-making process than specialized AI in public administrations so far, ii) the risks usually associated with GAI are often similar to those previously associated with specialized AI, but, while certain risks remain pertinent, others lose significance due to the constraints imposed by the inherent limitations of GAI technology itself when implemented in public administrations, iii) training data corpus for GAI becomes a strategic asset for public administrations, maybe more than the algorithms themselves, which was not the case for specialized AI.
At the individual level, the paper emphasizes the “language-centric” nature of GAI in contrast to “number-centric” AI systems implemented within public administrations up until now. It discusses the risks of replacement or enslavement of civil servants to the machines by exploring the transformative impact of GAI on the intellectual production of the State. The paper pleads for the development of critical vigilance and critical thinking as specific skills for civil servants who are highly specialized and will have to think with the assistance of a machine that is eclectic by nature…(More)”.
Rethinking the Role of Nudge in Public Policy
Paper by Sema Müge Özdemiray: “The view of achieving the desired results in public policies depends on steering individuals, with decisions and actions incompatible with rationality, in a predictable way has pushed policymakers to collaborate with psychology methods and theories. Accordingly, in the recent policy design of public authorities, there is an increasing interest in the nudge approach, which is considered a less costly, more liberal, more citizen-focused alternative to traditional policy instruments. Nudging, which has produced effective solutions for different social problems, has also brought with it many criticisms. These criticisms have led to questioning alternative and advanced new policy tools in the field of behavioral public policy. In this study, the “nudge-plus” approach is discussed as one of these policy tools, which was put forward by Peter John and Gerry Stoker and which argues that the criticisms directed to nudge can be overcome by incorporating a citizen-oriented perspective into the nudge approach. This study aims to draw attention to the prediction that the use of the nudge-plus method in public policy design can produce more effective results in line with today’s participatory and collaborative administration approach…(More)”.
Informing the Global Data Future: Benchmarking Data Governance Frameworks
Paper by Sara Marcucci, Natalia González Alarcón, Stefaan G. Verhulst and Elena Wüllhorst: “Data has become a critical trans-national and cross-border resource. Yet, the lack of a well-defined approach to using it poses challenges to harnessing its value. This article explores the increasing importance of global data governance due to the rapid growth of data, and the need for responsible data practices. The purpose of this paper is to compare approaches and identify patterns in the emergent data governance ecosystem within sectors close to the international development field, ultimately presenting key takeaways and reflections on when and why a global data governance framework may be needed. Overall, the paper provides information about the conditions when a more holistic, coordinated transnational approach to data governance may be needed to responsibly manage the global flow of data. The report does this by (a) considering conditions specified by the literature that may be conducive to global data governance, and (b) analyzing and comparing existing frameworks, specifically investigating six key elements: purpose, principles, anchoring documents, data description and lifecycle, processes, and practices. The article closes with a series of final recommendations, which include adopting a broader concept of data stewardship to reconcile data protection and promotion, focusing on responsible reuse of data to unlock socioeconomic value, harmonizing meanings to operationalize principles, incorporating global human rights frameworks to provide common North Stars, unifying key definitions of data, adopting a data lifecycle approach, incorporating participatory processes and collective agency, investing in new professions with specific roles, improving accountability through oversight and compliance mechanisms, and translating recommendations into practical tools…(More)”