To Whom Does the World Belong?


Essay by Alexander Hartley: “For an idea of the scale of the prize, it’s worth remembering that 90 percent of recent U.S. economic growth, and 65 percent of the value of its largest 500 companies, is already accounted for by intellectual property. By any estimate, AI will vastly increase the speed and scale at which new intellectual products can be minted. The provision of AI services themselves is estimated to become a trillion-dollar market by 2032, but the value of the intellectual property created by those services—all the drug and technology patents; all the images, films, stories, virtual personalities—will eclipse that sum. It is possible that the products of AI may, within my lifetime, come to represent a substantial portion of all the world’s financial value.

In this light, the question of ownership takes on its true scale, revealing itself as a version of Bertolt Brecht’s famous query: To whom does the world belong?


Questions of AI authorship and ownership can be divided into two broad types. One concerns the vast troves of human-authored material fed into AI models as part of their “training” (the process by which their algorithms “learn” from data). The other concerns ownership of what AIs produce. Call these, respectively, the input and output problems.

So far, attention—and lawsuits—have clustered around the input problem. The basic business model for LLMs relies on the mass appropriation of human-written text, and there simply isn’t anywhere near enough in the public domain. OpenAI hasn’t been very forthcoming about its training data, but GPT-4 was reportedly trained on around thirteen trillion “tokens,” roughly the equivalent of ten trillion words. This text is drawn in large part from online repositories known as “crawls,” which scrape the internet for troves of text from news sites, forums, and other sources. Fully aware that vast data scraping is legally untested—to say the least—developers charged ahead anyway, resigning themselves to litigating the issue in retrospect. Lawyer Peter Schoppert has called the training of LLMs without permission the industry’s “original sin”—to be added, we might say, to the technology’s mind-boggling consumption of energy and water in an overheating planet. (In September, Bloomberg reported that plans for new gas-fired power plants have exploded as energy companies are “racing to meet a surge in demand from power-hungry AI data centers.”)…(More)”.