Paper by Julia Romberg and Tobias Escher: “Public sector institutions that consult citizens to inform decision-making face the challenge of evaluating the contributions made by citizens. This evaluation has important democratic implications but at the same time, consumes substantial human resources. However, until now the use of artificial intelligence such as computer-supported text analysis has remained an under-studied solution to this problem. We identify three generic tasks in the evaluation process that could benefit from natural language processing (NLP). Based on a systematic literature search in two databases on computational linguistics and digital government, we provide a detailed review of existing methods and their performance. While some promising approaches exist, for instance to group data thematically and to detect arguments and opinions, we show that there remain important challenges before these could offer any reliable support in practice. These include the quality of results, the applicability to non-English language corpuses and making algorithmic models available to practitioners through software. We discuss a number of avenues that future research should pursue that can ultimately lead to solutions for practice. The most promising of these bring in the expertise of human evaluators, for example through active learning approaches or interactive topic modeling…(More)”.