Privacy-Enhancing and Privacy-Preserving Technologies in AI: Enabling Data Use and Operationalizing Privacy by Design and Default


Paper by the Centre for Information Policy Leadership at Hunton (“CIPL”): “provides an in-depth exploration of how privacy-enhancing technologies (“PETs”) are being deployed to address privacy within artificial intelligence (“AI”) systems. It aims to describe how these technologies can help operationalize privacy by design and default and serve as key business enablers, allowing companies and public sector organizations to access, share and use data that would otherwise be unavailable. It also seeks to demonstrate how PETs can address challenges and provide new opportunities across the AI life cycle, from data sourcing to model deployment, and includes real-world case studies…

As further detailed in the Paper, CIPL’s recommendations for boosting the adoption of PETs for AI are as follows:

Stakeholders should adopt a holistic view of the benefits of PETs in AI. PETs deliver value beyond addressing privacy and security concerns, such as fostering trust and enabling data sharing. It is crucial that stakeholders consider all these advantages when making decisions about their use.

Regulators should issue more clear and practical guidance to reduce regulatory uncertainty in the use of PETs in AI. While regulators increasingly recognize the value of PETs, clearer and more practical guidance is needed to help organizations implement these technologies effectively.

Regulators should adopt a risk-based approach to assess how PETs can meet standards for data anonymization, providing clear guidance to eliminate uncertainty. There is uncertainty around whether various PETs meet legal standards for data anonymization. A risk-based approach to defining anonymization standards could encourage wider adoption of PETs.

Deployers should take steps to provide contextually appropriate transparency to customers and data subjects. Given the complexity of PETs, deployers should ensure customers and data subjects understand how PETs function within AI models…(More)”.