Unlocking data for climate action requires trusted marketplaces


Report by Digital Impact Alliance: “In 2024, the northern hemisphere recorded the hottest summer overall, the hottest day, and the hottest ever month of August. That same month – August 2024 – this warming fueled droughts in Italy and intensified typhoons that devastated parts of the Philippines, Taiwan, and China. The following month, new research calculated that warming is costing the global economy billions of dollars: an increase in extreme heat and severe drought costs about 0.2% of a country’s GDP. 

These are only the latest stories and statistics that illustrate the growing costs of climate change – data points that have emerged in the short time since we published our second Spotlight on unlocking climate data with open transaction networks.

This third paper in the series continues the work of the Joint Learning Network on Unlocking Data for Climate Action (Climate Data JLN). This multi-disciplinary network identified multiple promising models to explore in the context of unlocking data for climate action. This Spotlight paper examines the third of these models: data spaces. Through examination of data spaces in action, the paper analyzes the key elements that render them more or less applicable to specific climate-related data sets. Data spaces are relatively new and mostly conceptual, with only a handful of implementations in process and concentrated in a few geographic areas. While this model requires extensive up-front work to agree upon governance and technical standards, the result is an approach that overcomes trust and financing issues by maintaining data sovereignty and creating a marketplace for data exchange…(More)”.

Local Systems


Position Paper by USAID: “…describes the key approaches USAID will use to translate systems thinking into systems practice. It focuses on ways USAID can better understand and engage local systems to support them in producing more sustainable results. Systems thinking is a mindset and set of tools that we use to understand how systems behave and produce certain results or outcomes. Systems practice is the application of systems thinking to better understand challenges and strengthen the capacity of local systems to unlock locally led, sustained progress. The shift from systems thinking to systems practice is driven by a desire to integrate systems practice throughout the Program Cycle and increase our capacity to actively and adaptively manage programming in ways that recognize complexity and help make our programs more effective and sustainable.

These approaches will be utilized alongside and within the context of USAID’s policies and guidance, including technical guidance for specific sectors, as well as evidence and lessons learned from partners around the world. Systems thinking is a long-standing discipline that can serve as a powerful tool for understanding and working with local systems. It has been a consistent component of USAID’s decades-long commitment to locally led development and humanitarian assistance. USAID uses systems thinking to better understand the complex and interrelated challenges we confront – from climate change to migration to governance – and the perspectives of diverse stakeholders on these issues. When we understand challenges as complex systems – where outcomes emerge from the interactions and relationships between actors and elements in that system – we can leverage and help strengthen the local capacities and relationships that will ultimately drive sustainable progress…(More)”.

Trust in artificial intelligence makes Trump/Vance a transhumanist ticket


Article by Filip Bialy: “AI plays a central role in the 2024 US presidential election, as a tool for disinformation and as a key policy issue. But its significance extends beyond these, connecting to an emerging ideology known as TESCREAL, which envisages AI as a catalyst for unprecedented progress, including space colonisation. After this election, TESCREALism may well have more than one representative in the White House, writes Filip Bialy

In June 2024, the essay Situational Awareness by former OpenAI employee Leopold Aschenbrenner sparked intense debate in the AI community. The author predicted that by 2027, AI would surpass human intelligence. Such claims are common among AI researchers. They often assert that only a small elite – mainly those working at companies like OpenAI – possesses inside knowledge of the technology. Many in this group hold a quasi-religious belief in the imminent arrival of artificial general intelligence (AGI) or artificial superintelligence (ASI)…

These hopes and fears, however, are not only religious-like but also ideological. A decade ago, Silicon Valley leaders were still associated with the so-called Californian ideology, a blend of hippie counterculture and entrepreneurial yuppie values. Today, figures like Elon Musk, Mark Zuckerberg, and Sam Altman are under the influence of a new ideological cocktail: TESCREAL. Coined in 2023 by Timnit Gebru and Émile P. Torres, TESCREAL stands for Transhumanism, Extropianism, Singularitarianism, Cosmism, Rationalism, Effective Altruism, and Longtermism.

While these may sound like obscure terms, they represent ideas developed over decades, with roots in eugenics. Early 20th-century eugenicists such as Francis Galton promoted selective breeding to enhance future generations. Later, with advances in genetic engineering, the focus shifted from eugenics’ racist origins to its potential to eliminate genetic defects. TESCREAL represents a third wave of eugenics. It aims to digitise human consciousness and then propagate digital humans into the universe…(More)”

Commission launches public consultation on the rules for researchers to access online platform data under the Digital Services Act


Press Release: “Today, the Commission launched a public consultation on the draft delegated act on access to online platform data for vetted researchers under the Digital Services Act (DSA).

text Digital Services Act inside a white triangle against a blue background

With the Digital Services Act, researchers will for the first time have access to data to study systemic risks and to assess online platforms’ risk mitigation measures in the EU. It will allow the research community to play a vital role in scrutinising and safeguarding the online environment.

The draft delegated act clarifies the procedures on how researchers can access Very Large Operating Platforms’ and Search Engines’ data. It also sets out rules on data formats and data documentation requirements. Lastly, it establishes the DSA data access portal, a one-stop-shop for researchers, data providers, and DSCs to exchange information on data access requests. The consultation follows a first call for evidence.

The consultation will run until 26 November 2024. After gathering public feedback, the Commission plans to adopt the rules in the first quarter of 2025…(More)”.

Open-Access AI: Lessons From Open-Source Software


Article by Parth NobelAlan Z. RozenshteinChinmayi Sharma: “Before analyzing how the lessons of open-source software might (or might not) apply to open-access AI, we need to define our terms and explain why we use the term “open-access AI” to describe models like Llama rather than the more commonly used “open-source AI.” We join many others in arguing that “open-source AI” is a misnomer for such models. It’s misleading to fully import the definitional elements and assumptions that apply to open-source software when talking about AI. Rhetoric matters, and the distinction isn’t just semantic; it’s about acknowledging the meaningful differences in access, control, and development. 

The software industry definition of “open source” grew out of the free software movement, which makes the point that “users have the freedom to run, copy, distribute, study, change and improve” software. As the movement emphasizes, one should “think of ‘free’ as in ‘free speech,’ not as in ‘free beer.’” What’s “free” about open-source software is that users can do what they want with it, not that they initially get it for free (though much open-source software is indeed distributed free of charge). This concept is codified by the Open Source Initiative as the Open Source Definition (OSD), many aspects of which directly apply to Llama 3.2. Llama 3.2’s license makes it freely redistributable by license holders (Clause 1 of the OSD) and allows the distribution of the original models, their parts, and derived works (Clauses 3, 7, and 8). ..(More)”.

Science and technology’s contribution to the UK economy


UK House of Lords Primer: “It is difficult to accurately pinpoint the economic contribution of science and technology to the UK economy. This is because of the way sectors are divided up and reported in financial statistics. 

 For example, in September 2024 the Office for National Statistics (ONS) reported the following gross value added (GVA) figures by industry/sector for 2023:

  • £71bn for IT and other information service activities 
  • £20.6bn for scientific research and development 

This would amount to £91.6bn, forming approximately 3.9% of the total UK GVA of £2,368.7bn for 2023. However, a number of other sectors could also be included in these figures, for example: 

  • the manufacture of computer, certain machinery and electrical components (valued at £38bn in 2023) 
  • telecommunications (valued at £34.5bn) 

If these two sectors were included too, GVA across all four sectors would total £164.1bn, approximately 6.9% of the UK’s 2023 GVA. However, this would likely still exclude relevant contributions that happen to fall within the definitions of different industries. For example, the manufacture of spacecraft and related machinery falls within the same sector as the manufacture of aircraft in the ONS’s data (this sector was valued at £10.8bn for 2023).  

Alternatively, others have made estimates of the economic contribution of more specific sectors connected to science and technology. For example: 

  • Oxford Economics, an economic advisory firm, has estimated that, in 2023, the life sciences sector contributed over £13bn to the UK economy and employed one in every 121 employed people 
  • the government has estimated the value of the digital sector (comprising information technology and digital content and media) at £158.3bn for 2022
  • a 2023 government report estimated the value of the UK’s artificial intelligence (AI) sector at around £3.7bn (in terms of GVA) and that the sector employed around 50,040 people
  • the Energy and Climate Intelligence Unit, a non-profit organisation, reported estimates that the GVA of the UK’s net zero economy (encompassing sectors such as renewables, carbon capture, green and certain manufacturing) was £74bn in 2022/23 and that it supported approximately 765,700 full-time equivalent (FTE) jobs…(More)”.

Quality Assessment of Volunteered Geographic Information


Paper by Donia Nciri et al: “Traditionally, government and national mapping agencies have been a primary provider of authoritative geospatial information. Today, with the exponential proliferation of Information and Communication Technologies or ICTs (such as GPS, mobile mapping and geo-localized web applications, social media), any user becomes able to produce geospatial information. This participatory production of geographical data gives birth to the concept of Volunteered Geographic Information (VGI). This phenomenon has greatly contributed to the production of huge amounts of heterogeneous data (structured data, textual documents, images, videos, etc.). It has emerged as a potential source of geographic information in many application areas. Despite the various advantages associated with it, this information lacks often quality assurance, since it is provided by diverse user profiles. To address this issue, numerous research studies have been proposed to assess VGI quality in order to help extract relevant content. This work attempts to provide an overall review of VGI quality assessment methods over the last decade. It also investigates varied quality assessment attributes adopted in recent works. Moreover, it presents a classification that forms a basis for future research. Finally, it discusses in detail the relevance and the main limitations of existing approaches and outlines some guidelines for future developments…(More)”.

Design Thinking as a Strategic Approach to E-Participation


Book by Ilaria Mariani et al: “This open access book examines how the adoption of Design Thinking (DT) can support public organisations in overcoming some of the current barriers in e-participation. Scholars have discussed the adoption of technology to strengthen public engagement through e-participation, streamline and enhance the relationship between government and society, and improve accessibility and effectiveness. However, barriers persist, necessitating further research in this area. By analysing e-participation barriers emerging from the literature and aligning them with notions in the DT literature, this book identifies five core DT practices to enhance e-participation: (i) Meaning creation and sense-making, (ii) Publics formation, (iii) Co-production, (iv) Experimentation and prototyping, and (v) Changing organisational culture. As a result, this book provides insights into enhancing tech-aided public engagement and promoting inclusivity for translating citizen input into tangible service implementations. The book triangulates qualitative analysis of relevant literature in the fields of e-participation and DT with knowledge from European projects experimenting with public participation activities implying experimentation with digital tools. This research aims to bridge the gap between theoretical frameworks and practical application, ultimately contributing to more effective e-participation and digital public services…(More)”.

Proactive Mapping to Manage Disaster


Article by Andrew Mambondiyani: “..In March 2019, Cyclone Idai ravaged Zimbabwe, killing hundreds of people and leaving a trail of destruction. The Global INFORM Risk Index data shows that Zimbabwe is highly vulnerable to extreme climate-related events like floods, cyclones, and droughts, which in turn destroy infrastructure, displace people, and result in loss of lives and livelihoods.

Severe weather events like Idai have exposed the shortcomings of Zimbabwe’s traditional disaster-management system, which was devised to respond to environmental disasters by providing relief and rehabilitation of infrastructure and communities. After Idai, a team of climate-change researchers from three Zimbabwean universities and the local NGO DanChurchAid (DCA) concluded that the nation must adopt a more proactive approach by establishing an early-warning system to better prepare for and thereby prevent significant damage and death from such disasters.

In response to these findings, the Open Mapping Hub—Eastern and Southern Africa (ESA Hub)—launched a program in 2022 to develop an anticipatory-response approach in Zimbabwe. The ESA Hub is a regional NGO based in Kenya created by the Humanitarian OpenStreetMap Team (HOT), an international nonprofit that uses open-mapping technology to reduce environmental disaster risk. One of HOT’s four global hubs and its first in Africa, the ESA Hub was created in 2021 to facilitate the aggregation, utilization, and dissemination of high-quality open-mapping data across 23 countries in Eastern and Southern Africa. Open-source expert Monica Nthiga leads the hub’s team of 13 experts in mapping, open data, and digital content. The team collaborates with community-based organizations, humanitarian organizations, governments, and UN agencies to meet their specific mapping needs to best anticipate future climate-related disasters.

“The ESA Hub’s [anticipatory-response] project demonstrates how preemptive mapping can enhance disaster preparedness and resilience planning,” says Wilson Munyaradzi, disaster-services manager at the ESA Hub.

Open-mapping tools and workflows enable the hub to collect geospatial data to be stored, edited, and reviewed for quality assurance prior to being shared with its partners. “Geospatial data has the potential to identify key features of the landscape that can help plan and prepare before disasters occur so that mitigation methods are put in place to protect lives and livelihoods,” Munyaradzi says…(More)”.

Navigating Generative AI in Government


Report by the IBM Center for The Business of Government: “Generative AI refers to algorithms that can create realistic content such as images, text, music, and videos by learning from existing data patterns. Generative AI does more than just create content, it also serves as a user-friendly interface for other AI tools, making complex results easy to understand and use. Generative AI transforms analysis and prediction results into personalized formats, improving explainability by converting complicated data into understandable content. As Generative AI evolves, it plays an active role in collaborative processes, functioning as a vital collaborator by offering strengths that complement human abilities.

Generative AI has the potential to revolutionize government agencies by enhancing efficiency, improving decision making, and delivering better services to citizens, while maintaining agility and scalability. However, in order to implement generative AI solutions effectively, government agencies must address key questions—such as what problems AI can solve, data governance frameworks, and scaling strategies, to ensure a thoughtful and effective AI strategy. By exploring generic use cases, agencies can better understand the transformative potential of generative AI and align it with their unique needs and ethical considerations.

This report, which distills perspectives from two expert roundtable of leaders in Australia, presents 11 strategic pathways for integrating generative AI in government. The strategies include ensuring coherent and ethical AI implementation, developing adaptive AI governance models, investing in a robust data infrastructure, and providing comprehensive training for employees. Encouraging innovation and prioritizing public engagement and transparency are also essential to harnessing the full potential of AI…(More)”