New book edited by Matthew L. Smith and Katherine M. A. Reilly (Foreword by Yochai Benkler) : “The emergence of open networked models made possible by digital technology has the potential to transform international development. Open network structures allow people to come together to share information, organize, and collaborate. Open development harnesses this power, to create new organizational forms and improve people’s lives; it is not only an agenda for research and practice but also a statement about how to approach international development. In this volume, experts explore a variety of applications of openness, addressing challenges as well as opportunities.
Open development requires new theoretical tools that focus on real world problems, consider a variety of solutions, and recognize the complexity of local contexts. After exploring the new theoretical terrain, the book describes a range of cases in which open models address such specific development issues as biotechnology research, improving education, and access to scholarly publications. Contributors then examine tensions between open models and existing structures, including struggles over privacy, intellectual property, and implementation. Finally, contributors offer broader conceptual perspectives, considering processes of social construction, knowledge management, and the role of individual intent in the development and outcomes of social models.”
Crowdsourcing forecasts on science and technology events and innovations
Kurzweil News: “George Mason University launched today, Jan. 10, the largest and most advanced science and technology prediction market in the world: SciCast.
The federally funded research project aims to improve the accuracy of science and technology forecasts. George Mason research assistant professor Charles Twardy is the principal investigator of the project.
SciCast crowdsources forecasts on science and technology events and innovations from aerospace to zoology.
For example, will Amazon use drones for commercial package delivery by the end of 2017? Today, SciCast estimates the chance at slightly more than 50 percent. If you think that is too low, you can estimate a higher chance. SciCast will use your estimate to adjust the combined forecast.
Forecasters can update their forecasts at any time; in the above example, perhaps after the Federal Aviation Administration (FAA) releases its new guidelines for drones. The continually updated and reshaped information helps both the public and private sectors better monitor developments in a variety of industries. SciCast is a real-time indicator of what participants think is going to happen in the future.
“Combinatorial” prediction market better than simple average
How SciCast works (Credit: George Mason University)
The idea is that collective wisdom from diverse, informed opinions can provide more accurate predictions than individual forecasters, a notion borne out by other crowdsourcing projects. Simply taking an average is almost always better than going with the “best” expert. But in a two-year test on geopolitical questions, the SciCast method did 40 percent better than the simple average.
SciCast uses the first general “combinatorial” prediction market. In a prediction market, forecasters spend points to adjust the group forecast. Significant changes “cost” more — but “pay” more if they turn out to be right. So better forecasters gain more points and therefore more influence, improving the accuracy of the system.
In a combinatorial market like SciCast, forecasts can influence each other. For example, forecasters might have linked cherry production to honeybee populations. Then, if forecasters increase the estimated percentage of honeybee colonies lost this winter, SciCast automatically reduces the estimated 2014 cherry production. This connectivity among questions makes SciCast more sophisticated than other prediction markets.
SciCast topics include agriculture, biology and medicine, chemistry, computational sciences, energy, engineered technologies, global change, information systems, mathematics, physics, science and technology business, social sciences, space sciences and transportation….
Crowdsourcing forecasts on science and technology events and innovations
January 10, 2014
Example of SciCast crowdsourced forecast (credit: George Mason University)
George Mason University launched today, Jan. 10, the largest and most advanced science and technology prediction market in the world: SciCast.
The federally funded research project aims to improve the accuracy of science and technology forecasts. George Mason research assistant professor Charles Twardy is the principal investigator of the project.
SciCast crowdsources forecasts on science and technology events and innovations from aerospace to zoology.
For example, will Amazon use drones for commercial package delivery by the end of 2017? Today, SciCast estimates the chance at slightly more than 50 percent. If you think that is too low, you can estimate a higher chance. SciCast will use your estimate to adjust the combined forecast.
Forecasters can update their forecasts at any time; in the above example, perhaps after the Federal Aviation Administration (FAA) releases its new guidelines for drones. The continually updated and reshaped information helps both the public and private sectors better monitor developments in a variety of industries. SciCast is a real-time indicator of what participants think is going to happen in the future.
“Combinatorial” prediction market better than simple average
How SciCast works (Credit: George Mason University)
The idea is that collective wisdom from diverse, informed opinions can provide more accurate predictions than individual forecasters, a notion borne out by other crowdsourcing projects. Simply taking an average is almost always better than going with the “best” expert. But in a two-year test on geopolitical questions, the SciCast method did 40 percent better than the simple average.
SciCast uses the first general “combinatorial” prediction market. In a prediction market, forecasters spend points to adjust the group forecast. Significant changes “cost” more — but “pay” more if they turn out to be right. So better forecasters gain more points and therefore more influence, improving the accuracy of the system.
In a combinatorial market like SciCast, forecasts can influence each other. For example, forecasters might have linked cherry production to honeybee populations. Then, if forecasters increase the estimated percentage of honeybee colonies lost this winter, SciCast automatically reduces the estimated 2014 cherry production. This connectivity among questions makes SciCast more sophisticated than other prediction markets.
SciCast topics include agriculture, biology and medicine, chemistry, computational sciences, energy, engineered technologies, global change, information systems, mathematics, physics, science and technology business, social sciences, space sciences and transportation.
Seeking futurists to improve forecasts, pose questions
(Credit: George Mason University)
“With so many science and technology questions, there are many niches,” says Twardy, a researcher in the Center of Excellence in Command, Control, Communications, Computing and Intelligence (C4I), based in Mason’s Volgenau School of Engineering.
“We seek scientists, statisticians, engineers, entrepreneurs, policymakers, technical traders, and futurists of all stripes to improve our forecasts, link questions together and pose new questions.”
Forecasters discuss the questions, and that discussion can lead to new, related questions. For example, someone asked,Will Amazon deliver its first package using an unmanned aerial vehicle by Dec. 31, 2017?
An early forecaster suggested that this technology is likely to first be used in a mid-sized town with fewer obstructions or local regulatory issues. Another replied that Amazon is more likely to use robots to deliver packages within a short radius of a conventional delivery vehicle. A third offered information about an FAA report related to the subject.
Any forecaster could then write a question about upcoming FAA rulings, and link that question to the Amazon drones question. Forecasters could then adjust the strength of the link.
“George Mason University has succeeded in launching the world’s largest forecasting tournament for science and technology,” says Jason Matheny, program manager of Forecasting Science and Technology at the Intelligence Advanced Research Projects Activity, based in Washington, D.C. “SciCast can help the public and private sectors to better understand a range of scientific and technological trends.”
Collaborative but Competitive
More than 1,000 experts and enthusiasts from science and tech-related associations, universities and interest groups preregistered to participate in SciCast. The group is collaborative in spirit but also competitive. Participants are rewarded for accurate predictions by moving up on the site leaderboard, receiving more points to spend influencing subsequent prognostications. Participants can (and should) continually update their predictions as new information is presented.
SciCast has partnered with the American Association for the Advancement of Science, the Institute of Electrical and Electronics Engineers, and multiple other science and technology professional societies.
Mason members of the SciCast project team include Twardy; Kathryn Laskey, associate director for the C4I and a professor in the Department of Systems Engineering and Operations Research; associate professor of economics Robin Hanson; C4I research professor Tod Levitt; and C4I research assistant professors Anamaria Berea, Kenneth Olson and Wei Sun.
To register for SciCast, visit www.SciCast.org, or for more information, e-mail [email protected]. SciCast is open to anyone age 18 or older.”
New Book: Open Data Now
New book by Joel Gurin (The GovLab): “Open Data is the world’s greatest free resource–unprecedented access to thousands of databases–and it is one of the most revolutionary developments since the Information Age began. Combining two major trends–the exponential growth of digital data and the emerging culture of disclosure and transparency–Open Data gives you and your business full access to information that has never been available to the average person until now. Unlike most Big Data, Open Data is transparent, accessible, and reusable in ways that give it the power to transform business, government, and society.
Open Data Now is an essential guide to understanding all kinds of open databases–business, government, science, technology, retail, social media, and more–and using those resources to your best advantage. You’ll learn how to tap crowds for fast innovation, conduct research through open collaboration, and manage and market your business in a transparent marketplace.
Open Data is open for business–and the opportunities are as big and boundless as the Internet itself. This powerful, practical book shows you how to harness the power of Open Data in a variety of applications:
- HOT STARTUPS: turn government data into profitable ventures
- SAVVY MARKETING: understand how reputational data drives your brand
- DATA-DRIVEN INVESTING: apply new tools for business analysis
- CONSUMER IN FORMATION: connect with your customers using smart disclosure
- GREEN BUSINESS: use data to bet on sustainable companies
- FAST R&D: turn the online world into your research lab
- NEW OPPORTUNITIES: explore open fields for new businesses
Whether you’re a marketing professional who wants to stay on top of what’s trending, a budding entrepreneur with a billion-dollar idea and limited resources, or a struggling business owner trying to stay competitive in a changing global market–or if you just want to understand the cutting edge of information technology–Open Data Now offers a wealth of big ideas, strategies, and techniques that wouldn’t have been possible before Open Data leveled the playing field.
The revolution is here and it’s now. It’s Open Data Now.”
Supporting open government in New Europe
Google Europe Blog: “The “New Europe” countries that joined the European Union over the past decade are moving ahead fast to use the Internet to improve transparency and open government. We recently partnered with Techsoup Global to support online projects driving forward good governance in Romania, the Czech Republic, and most recently, in Slovakia.
Techsoup Global, in partnership with the Slovak Center for Philanthropy, recently held an exciting social-startups awards ceremony Restart Slovakia 2013 in Bratislava. Slovakia’s Deputy Minister of Finance and Digital Champion Peter Pellegrini delivered keynote promoting Internet and Open Data and announced the winners of this year contest. Ambassadors from U.S., Israel and Romania and several distinguished Slovak NGOs also attended the ceremony.
Winning projects included:
- Vzdy a vsade – Always and Everywhere – a volunteer portal offering online and anonymous psychological advice to internet users via chat.
- Nemlcme.sk – a portal providing counsel for victims of sexual assaults.
- Co robim – an educational online library of job careers advising young people how to choose their career paths and dream jobs.
- Mapa zlocinu – an online map displaying various rates of criminality in different neighbourhoods.
- Demagog.sk – a platform focused on analyzing public statements of politicians and releasing information about politicians and truthfulness of their speeches in a user-friendly format.”
The Failure and the Promise of Public Participation
Dr. Mark Funkhouser in Governing: “In a recent study entitled Making Public Participation Legal, Matt Leighninger cites a Knight Foundation report that found that attending a public meeting was more likely to reduce a person’s sense of efficacy and attachment to the community than to increase it. That sad fact is no surprise to the government officials who have to run — and endure — public meetings.
Every public official who has served for any length of time has horror stories about these forums. The usual suspects show up — the self-appointed activists (who sometimes seem to be just a little nuts) and the lobbyists. Regular folks have made the calculation that only in extreme circumstance, when they are really scared or angry, is attending a public hearing worth their time. And who can blame them when it seems clear that the game is rigged, the decisions already have been made, and they’ll probably have to sit through hours of blather before they get their three minutes at the microphone?
So much transparency and yet so little trust. Despite the fact that governments are pumping out more and more information to citizens, trust in government has edged lower and lower, pushed in part no doubt by the lingering economic hardships and government cutbacks resulting from the recession. Most public officials I talk to now take it as an article of faith that the public generally disrespects them and the governments they work for.
Clearly the relationship between citizens and their governments needs to be reframed. Fortunately, over the last couple of decades lots of techniques have been developed by advocates of deliberative democracy and citizen participation that provide both more meaningful engagement and better community outcomes. There are decision-making forums, “visioning” forums and facilitated group meetings, most of which feature some combination of large-group, small-group and online interactions.
But here’s the rub: Our legal framework doesn’t support these new methods of public participation. This fact is made clear in Making Public Participation Legal, which was compiled by a working group that included people from the National Civic League, the American Bar Association, the International City/County Management Association and a number of leading practitioners of public participation.
The requirements for public meetings in local governments are generally built into state statutes such as sunshine or open-meetings laws or other laws governing administrative procedures. These laws may require public hearings in certain circumstances and mandate that advance notice, along with an agenda, be posted for any meeting of an “official body” — from the state legislature to a subcommittee of the city council or an advisory board of some kind. And a “meeting” is one in which a quorum attends. So if three of a city council’s nine members sit on the finance committee and two of the committee members happen to show up at a public meeting, they may risk having violated the open-meetings law…”
Why the Nate Silvers of the World Don’t Know Everything
Felix Salmon in Wired: “This shift in US intelligence mirrors a definite pattern of the past 30 years, one that we can see across fields and institutions. It’s the rise of the quants—that is, the ascent to power of people whose native tongue is numbers and algorithms and systems rather than personal relationships or human intuition. Michael Lewis’ Moneyball vividly recounts how the quants took over baseball, as statistical analysis trumped traditional scouting and propelled the underfunded Oakland A’s to a division-winning 2002 season. More recently we’ve seen the rise of the quants in politics. Commentators who “trusted their gut” about Mitt Romney’s chances had their gut kicked by Nate Silver, the stats whiz who called the election days beforehand as a lock for Obama, down to the very last electoral vote in the very last state.
The reason the quants win is that they’re almost always right—at least at first. They find numerical patterns or invent ingenious algorithms that increase profits or solve problems in ways that no amount of subjective experience can match. But what happens after the quants win is not always the data-driven paradise that they and their boosters expected. The more a field is run by a system, the more that system creates incentives for everyone (employees, customers, competitors) to change their behavior in perverse ways—providing more of whatever the system is designed to measure and produce, whether that actually creates any value or not. It’s a problem that can’t be solved until the quants learn a little bit from the old-fashioned ways of thinking they’ve displaced.
No matter the discipline or industry, the rise of the quants tends to happen in four stages. Stage one is what you might call pre-disruption, and it’s generally best visible in hindsight. Think about quaint dating agencies in the days before the arrival of Match .com and all the other algorithm-powered online replacements. Or think about retail in the era before floor-space management analytics helped quantify exactly which goods ought to go where. For a live example, consider Hollywood, which, for all the money it spends on market research, is still run by a small group of lavishly compensated studio executives, all of whom are well aware that the first rule of Hollywood, as memorably summed up by screenwriter William Goldman, is “Nobody knows anything.” On its face, Hollywood is ripe for quantification—there’s a huge amount of data to be mined, considering that every movie and TV show can be classified along hundreds of different axes, from stars to genre to running time, and they can all be correlated to box office receipts and other measures of profitability.
Next comes stage two, disruption. In most industries, the rise of the quants is a recent phenomenon, but in the world of finance it began back in the 1980s. The unmistakable sign of this change was hard to miss: the point at which you started getting targeted and personalized offers for credit cards and other financial services based not on the relationship you had with your local bank manager but on what the bank’s algorithms deduced about your finances and creditworthiness. Pretty soon, when you went into a branch to inquire about a loan, all they could do was punch numbers into a computer and then give you the computer’s answer.
For a present-day example of disruption, think about politics. In the 2012 election, Obama’s old-fashioned campaign operatives didn’t disappear. But they gave money and freedom to a core group of technologists in Chicago—including Harper Reed, former CTO of the Chicago-based online retailer Threadless—and allowed them to make huge decisions about fund-raising and voter targeting. Whereas earlier campaigns had tried to target segments of the population defined by geography or demographic profile, Obama’s team made the campaign granular right down to the individual level. So if a mom in Cedar Rapids was on the fence about who to vote for, or whether to vote at all, then instead of buying yet another TV ad, the Obama campaign would message one of her Facebook friends and try the much more effective personal approach…
After disruption, though, there comes at least some version of stage three: overshoot. The most common problem is that all these new systems—metrics, algorithms, automated decisionmaking processes—result in humans gaming the system in rational but often unpredictable ways. Sociologist Donald T. Campbell noted this dynamic back in the ’70s, when he articulated what’s come to be known as Campbell’s law: “The more any quantitative social indicator is used for social decision-making,” he wrote, “the more subject it will be to corruption pressures and the more apt it will be to distort and corrupt the social processes it is intended to monitor.”…
Policing is a good example, as explained by Harvard sociologist Peter Moskos in his book Cop in the Hood: My Year Policing Baltimore’s Eastern District. Most cops have a pretty good idea of what they should be doing, if their goal is public safety: reducing crime, locking up kingpins, confiscating drugs. It involves foot patrols, deep investigations, and building good relations with the community. But under statistically driven regimes, individual officers have almost no incentive to actually do that stuff. Instead, they’re all too often judged on results—specifically, arrests. (Not even convictions, just arrests: If a suspect throws away his drugs while fleeing police, the police will chase and arrest him just to get the arrest, even when they know there’s no chance of a conviction.)…
It’s increasingly clear that for smart organizations, living by numbers alone simply won’t work. That’s why they arrive at stage four: synthesis—the practice of marrying quantitative insights with old-fashioned subjective experience. Nate Silver himself has written thoughtfully about examples of this in his book, The Signal and the Noise. He cites baseball, which in the post-Moneyball era adopted a “fusion approach” that leans on both statistics and scouting. Silver credits it with delivering the Boston Red Sox’s first World Series title in 86 years. Or consider weather forecasting: The National Weather Service employs meteorologists who, understanding the dynamics of weather systems, can improve forecasts by as much as 25 percent compared with computers alone. A similar synthesis holds in economic forecasting: Adding human judgment to statistical methods makes results roughly 15 percent more accurate. And it’s even true in chess: While the best computers can now easily beat the best humans, they can in turn be beaten by humans aided by computers….
That’s what a good synthesis of big data and human intuition tends to look like. As long as the humans are in control, and understand what it is they’re controlling, we’re fine. It’s when they become slaves to the numbers that trouble breaks out. So let’s celebrate the value of disruption by data—but let’s not forget that data isn’t everything.
From Faith-Based to Evidence-Based: The Open Data 500 and Understanding How Open Data Helps the American Economy
Beth Noveck in Forbes: “Public funds have, after all, paid for their collection, and the law says that federal government data are not protected by copyright. By the end of 2009, the US and the UK had the only two open data one-stop websites where agencies could post and citizens could find open data. Now there are over 300 such portals for government data around the world with over 1 million available datasets. This kind of Open Data — including weather, safety and public health information as well as information about government spending — can serve the country by increasing government efficiency, shedding light on regulated industries, and driving innovation and job creation.
It’s becoming clear that open data has the potential to improve people’s lives. With huge advances in data science, we can take this data and turn it into tools that help people choose a safer hospital, pick a better place to live, improve the performance of their farm or business by having better climate models, and know more about the companies with whom they are doing business. Done right, people can even contribute data back, giving everyone a better understanding, for example of nuclear contamination in post-Fukushima Japan or incidences of price gouging in America’s inner cities.
The promise of open data is limitless. (see the GovLab index for stats on open data) But it’s important to back up our faith with real evidence of what works. Last September the GovLab began the Open Data 500 project, funded by the John S. and James L. Knight Foundation, to study the economic value of government Open Data extensively and rigorously. A recent McKinsey study pegged the annual global value of Open Data (including free data from sources other than government), at $3 trillion a year or more. We’re digging in and talking to those companies that use Open Data as a key part of their business model. We want to understand whether and how open data is contributing to the creation of new jobs, the development of scientific and other innovations, and adding to the economy. We also want to know what government can do better to help industries that want high quality, reliable, up-to-date information that government can supply. Of those 1 million datasets, for example, 96% are not updated on a regular basis.
The GovLab just published an initial working list of 500 American companies that we believe to be using open government data extensively. We’ve also posted in-depth profiles of 50 of them — a sample of the kind of information that will be available when the first annual Open Data 500 study is published in early 2014. We are also starting a similar study for the UK and Europe.
Even at this early stage, we are learning that Open Data is a valuable resource. As my colleague Joel Gurin, author of Open Data Now: the Secret to Hot Start-Ups, Smart Investing, Savvy Marketing and Fast Innovation, who directs the project, put it, “Open Data is a versatile and powerful economic driver in the U.S. for new and existing businesses around the country, in a variety of ways, and across many sectors. The diversity of these companies in the kinds of data they use, the way they use it, their locations, and their business models is one of the most striking things about our findings so far.” Companies are paradoxically building value-added businesses on top of public data that anyone can access for free….”
FULL article can be found here.
Entrepreneurs Shape Free Data Into Money
Supporters of such programs often see them as a local economic stimulus plan, allowing software developers and entrepreneurs in cities ranging from San Francisco to South Bend, Ind., to New York, to build new businesses based on the information they get from government websites.
When Los Angeles Mayor Eric Garcetti issued an executive directive last month to launch the city’s open-data program, he cited entrepreneurs and businesses as important beneficiaries. Open-data promotes innovation and “gives companies, individuals, and nonprofit organizations the opportunity to leverage one of government’s greatest assets: public information,” according to the Dec. 18 directive.
A poster child for the movement might be 34-year-old Matt Ehrlichman of Seattle, who last year built an online business in part using Seattle work permits, professional licenses and other home-construction information gathered up by the city’s Department of Planning and Development.
While his website is free, his business, called Porch.com, has more than 80 employees and charges a $35 monthly fee to industry professionals who want to boost the visibility of their projects on the site.
The site gathers raw public data—such as addresses for homes under renovation, what they are doing, who is doing the work and how much they are charging—and combines it with photos and other information from industry professionals and homeowners. It then creates a searchable database for users to compare ideas and costs for projects near their own neighborhood.
…Ian Kalin, director of open-data services at Socrata, a Seattle-based software firm that makes the back-end applications for many of these government open-data sites, says he’s worked with hundreds of companies that were formed around open data.
Among them is Climate Corp., a San Francisco-based firm that collects weather and yield-forecasting data to help farmers decide when and where to plant crops. Launched in 2006, the firm was acquired in October by Monsanto Co. MON -2.90% , the seed-company giant, for $930 million.
Overall, the rate of new business formation declined nationally between 2006 and 2010. But according to the latest data from the Ewing Marion Kauffman Foundation, an entrepreneurship advocacy group in Kansas City, Mo., the rate of new business formation in Seattle in 2011 rose 9.41% in 2011, compared with the national average of 3.9%.
Other cities where new business formation was ahead of the national average include Chicago, Austin, Texas, Baltimore, and South Bend, Ind.—all cities that also have open-data programs. Still, how effective the ventures are in creating jobs is difficult to gauge.
One wrinkle: privacy concerns about the potential for information—such as property tax and foreclosure data—to be misused.
Some privacy advocates fear that government data that include names, addresses and other sensitive information could be used by fraudsters to target victims.”
The Emergence Of The Connected City
Glen Martin at Forbes: “If the modern city is a symbol for randomness — even chaos — the city of the near future is shaping up along opposite metaphorical lines. The urban environment is evolving rapidly, and a model is emerging that is more efficient, more functional, more — connected, in a word.
This will affect how we work, commute, and spend our leisure time. It may well influence how we relate to one another, and how we think about the world. Certainly, our lives will be augmented: better public transportation systems, quicker responses from police and fire services, more efficient energy consumption. But there could also be dystopian impacts: dwindling privacy and imperiled personal data. We could even lose some of the ferment that makes large cities such compelling places to live; chaos is stressful, but it can also be stimulating.
It will come as no surprise that converging digital technologies are driving cities toward connectedness. When conjoined, ISM band transmitters, sensors, and smart phone apps form networks that can make cities pretty darn smart — and maybe more hygienic. This latter possibility, at least, is proposed by Samrat Saha of the DCI Marketing Group in Milwaukee. Saha suggests “crowdsourcing” municipal trash pick-up via BLE modules, proximity sensors and custom mobile device apps.
“My idea is a bit tongue in cheek, but I think it shows how we can gain real efficiencies in urban settings by gathering information and relaying it via the Cloud,” Saha says. “First, you deploy sensors in garbage cans. Each can provides a rough estimate of its fill level and communicates that to a BLE 112 Module.”
As pedestrians who have downloaded custom “garbage can” apps on their BLE-capable iPhone or Android devices pass by, continues Saha, the information is collected from the module and relayed to a Cloud-hosted service for action — garbage pick-up for brimming cans, in other words. The process will also allow planners to optimize trash can placement, redeploying receptacles from areas where need is minimal to more garbage-rich environs….
Garbage can connectivity has larger implications than just, well, garbage. Brett Goldstein, the former Chief Data and Information Officer for the City of Chicago and a current lecturer at the University of Chicago, says city officials found clear patterns between damaged or missing garbage cans and rat problems.
“We found areas that showed an abnormal increase in missing or broken receptacles started getting rat outbreaks around seven days later,” Goldstein said. “That’s very valuable information. If you have sensors on enough garbage cans, you could get a temporal leading edge, allowing a response before there’s a problem. In urban planning, you want to emphasize prevention, not reaction.”
Such Cloud-based app-centric systems aren’t suited only for trash receptacles, of course. Companies such as Johnson Controls are now marketing apps for smart buildings — the base component for smart cities. (Johnson’s Metasys management system, for example, feeds data to its app-based Paoptix Platform to maximize energy efficiency in buildings.) In short, instrumented cities already are emerging. Smart nodes — including augmented buildings, utilities and public service systems — are establishing connections with one another, like axon-linked neurons.
But Goldstein, who was best known in Chicago for putting tremendous quantities of the city’s data online for public access, emphasizes instrumented cities are still in their infancy, and that their successful development will depend on how well we “parent” them.
“I hesitate to refer to ‘Big Data,’ because I think it’s a terribly overused term,” Goldstein said. “But the fact remains that we can now capture huge amounts of urban data. So, to me, the biggest challenge is transitioning the fields — merging public policy with computer science into functional networks.”…”
Walgreens Taps Crowdsourcing to Deliver Cold Medicine to Shut-Ins
Mashable: “Walgreens is reaching out to consumers who are so walloped with a cold or flu that a trip to the corner drugstore seems an insurmountable obstacle.
The national drug chain is partnering with TaskRabbit, the online mobile marketplace, to allow deliveries of over-the-counter cold medicine in any of the 19 cities in which TaskRabbit is available. Such deliveries can be made via TaskRabbit’s iOS app or on its website. Standard TaskRabbit rates apply including a 20% service charge and a runner’s fee. So if a runner’s fee is $10, you would pay an additional $12 plus the cost of your cold medicine, to get the delivery.
The partnership, arranged by OMD’s Ignition Factory, runs this week through Feb. 18, typically the weeks in which cold and flu complaints have the sharpest increases. During that time, the Walgreens option will appear in TaskRabbit’s iOS app’s Task Wheel and on the website. Though TaskRabbit has partnered with other national brands, including Pepsi, this is its first with a retailer.
However, the deal is more of a pr exercise than anything else: Consumers have had the ability arrange a TaskRabbit to shop and buy cold medicine at Walgreens prior to the agreement. The chain is hoping to raise awareness about this option, though.
“We just wanted to make it as easy as possible,” says Wilson Standish, project manager at Ignition Factory. “When you’re sick, you don’t even want to get out of bed.”