Framework for Governance of Indigenous Data (GID)


Framework by The National Indigenous Australians Agency (NIAA): “Australian Public Service agencies now have a single Framework for working with Indigenous data.

The National Indigenous Australians Agency will collaborate across the Australian Public Service to implement the Framework for Governance of Indigenous Data in 2024.

Commonwealth agencies are expected to develop a seven-year implementation plan, guided by four principles:

  1. Partner with Aboriginal and Torres Strait Islander people
  2. Build data-related capabilities
  3. Provide knowledge of data assets
  4. Build an inclusive data system

The Framework represents the culmination of over 18 months of co-design effort between the Australian Government and Aboriginal and Torres Strait Islander partners. While we know we have some way to go, the Framework serves as a significant step forward to improve the collection, use and disclosure of data, to better serve Aboriginal and Torres Strait Islander priorities.

The Framework places Aboriginal and Torres Strait Islander peoples at its core. Recognising the importance of authentic engagement, it emphasises the need for First Nations communities to have a say in decisions affecting them, including the use of data in government policy-making.

Acknowledging data’s significance in self-determination, the Framework provides a stepping stone towards greater awareness and acceptance by Australian Government agencies of the principles of Indigenous Data Sovereignty.

It offers practical guidance on implementing key aspects of data governance aligned with both Indigenous Data Sovereignty principles and the objectives of the Australian Government…(More)”.

Can Artificial Intelligence Bring Deliberation to the Masses?


Chapter by Hélène Landemore: “A core problem in deliberative democracy is the tension between two seemingly equally important conditions of democratic legitimacy: deliberation, on the one hand, and mass participation, on the other. Might artificial intelligence help bring quality deliberation to the masses? The answer is a qualified yes. The chapter first examines the conundrum in deliberative democracy around the trade-off between deliberation and mass participation by returning to the seminal debate between Joshua Cohen and Jürgen Habermas. It then turns to an analysis of the 2019 French Great National Debate, a low-tech attempt to involve millions of French citizens in a two-month-long structured exercise of collective deliberation. Building on the shortcomings of this process, the chapter then considers two different visions for an algorithm-powered form of mass deliberation—Mass Online Deliberation (MOD), on the one hand, and Many Rotating Mini-publics (MRMs), on the other—theorizing various ways artificial intelligence could play a role in them. To the extent that artificial intelligence makes the possibility of either vision more likely to come to fruition, it carries with it the promise of deliberation at the very large scale….(More)”

Artificial Intelligence Opportunities for State and Local Departments Of Transportation


Report by the National Academies of Sciences, Engineering, and Medicine: “Artificial intelligence (AI) has revolutionized various areas in departments of transportation (DOTs), such as traffic management and optimization. Through predictive analytics and real-time data processing, AI systems show promise in alleviating congestion, reducing travel times, and enhancing overall safety by alerting drivers to potential hazards. AI-driven simulations are also used for testing and improving transportation systems, saving time and resources that would otherwise be needed for physical tests…(More)”.

Handbook of Public Participation in Impact Assessment


Book edited by Tanya Burdett and A. John Sinclair: “… provides a clear overview of how to achieve meaningful public participation in impact assessment (IA). It explores conceptual elements, including the democratic core of public participation in IA, as well as practical challenges, such as data sharing, with diverse perspectives from 39 leading academics and practitioners.

Critically examining how different engagement frameworks have evolved over time, this Handbook underlines the ways in which tokenistic approaches and wider planning and approvals structures challenge the implementation of meaningful public participation. Contributing authors discuss the impact of international agreements, legislation and regulatory regimes, and review commonly used professional association frameworks such as the International Association for Public Participation core values for practice. They demonstrate through case studies what meaningful public participation looks like in diverse regional contexts, addressing the intentions of being purposeful, inclusive, transformative and proactive. By emphasising the strength of community engagement, the Handbook argues that public participation in IA can contribute to enhanced democracy and sustainability for all…(More)”.

How to optimize the systematic review process using AI tools


Paper by Nicholas Fabiano et al: “Systematic reviews are a cornerstone for synthesizing the available evidence on a given topic. They simultaneously allow for gaps in the literature to be identified and provide direction for future research. However, due to the ever-increasing volume and complexity of the available literature, traditional methods for conducting systematic reviews are less efficient and more time-consuming. Numerous artificial intelligence (AI) tools are being released with the potential to optimize efficiency in academic writing and assist with various stages of the systematic review process including developing and refining search strategies, screening titles and abstracts for inclusion or exclusion criteria, extracting essential data from studies and summarizing findings. Therefore, in this article we provide an overview of the currently available tools and how they can be incorporated into the systematic review process to improve efficiency and quality of research synthesis. We emphasize that authors must report all AI tools that have been used at each stage to ensure replicability as part of reporting in methods….(More)”.

Misuse versus Missed use — the Urgent Need for Chief Data Stewards in the Age of AI


Article by Stefaan Verhulst and Richard Benjamins: “In the rapidly evolving landscape of artificial intelligence (AI), the need for and importance of Chief AI Officers (CAIO) are receiving increasing attention. One prominent example came in a recent memo on AI policy, issued by Shalanda Young, Director of the United States Office of Management and Budget. Among the most important — and prominently featured — recommendations were a call, “as required by Executive Order 14110,” for all government agencies to appoint a CAIO within 60 days of the release of the memo.

In many ways, this call is an important development; not even the EU AI Act is requiring this of public agencies. CAIOs have an important role to play in the search for a responsible use of AI for public services that would include guardrails and help protect the public good. Yet while acknowledging the need for CAIOs to safeguard a responsible use of AI, we argue that the duty of Administrations is not only to avoid negative impact, but also to create positive impact. In this sense, much work remains to be done in defining the CAIO role and considering their specific functions. In pursuit of these tasks, we further argue, policymakers and other stakeholders might benefit from looking at the role of another emerging profession in the digital ecology–that of Chief Data Stewards (CDS), which is focused on creating such positive impact for instance to help achieve the UN’s SDGs. Although the CDS position is itself somewhat in flux, we suggest that CDS can nonetheless provide a useful template for the functions and roles of CAIOs.

Image courtesy of Advertising Week

We start by explaining why CDS are relevant to the conversation over CAIOs; this is because data and data governance are foundational to AI governance. We then discuss some particular functions and competencies of CDS, showing how these can be equally applied to the governance of AI. Among the most important (if high-level) of these competencies is an ability to proactively identify opportunities in data sharing, and to balance the risks and opportunities of our data age. We conclude by exploring why this competency–an ethos of positive data responsibility that avoids overly-cautious risk aversion–is so important in the AI and data era…(More)”

The Social Value of Hurricane Forecasts


Paper by Renato Molina & Ivan Rudik: “What is the impact and value of hurricane forecasts? We study this question using newly-collected forecast data for major US hurricanes since 2005. We find higher wind speed forecasts increase pre-landfall protective spending, but erroneous under-forecasts increase post-landfall damage and rebuilding expenditures. Our main contribution is a new theoretically-grounded approach for estimating the marginal value of forecast improvements. We find that the average annual improvement reduced total per-hurricane costs, inclusive of unobserved protective spending, by $700,000 per county. Improvements since 2007 reduced costs by 19%, averaging $5 billion per hurricane. This exceeds the annual budget for all federal weather forecasting…(More)”.

Green Light


Google Research: “Road transportation is responsible for a significant amount of global and urban greenhouse gas emissions. It is especially problematic at city intersections where pollution can be 29 times higher than on open roads.  At intersections, half of these emissions come from traffic accelerating after stopping. While some amount of stop-and-go traffic is unavoidable, part of it is preventable through the optimization of traffic light timing configurations. To improve traffic light timing, cities need to either install costly hardware or run manual vehicle counts; both of these solutions are expensive and don’t provide all the necessary information. 

Green Light uses AI and Google Maps driving trends, with one of the strongest understandings of global road networks, to model traffic patterns and build intelligent recommendations for city traffic engineers to optimize traffic flow. Early numbers indicate a potential for up to 30% reduction in stops and 10% reduction in greenhouse gas emissions (1). By optimizing each intersection, and coordinating between adjacent intersections, we can create waves of green lights and help cities further reduce stop-and-go traffic. Green Light is now live in 70 intersections in 12 cities, 4 continents, from Haifa, Israel to Bangalore, India to Hamburg, Germany – and in these intersections we are able to save fuel and lower emissions for up to 30M car rides monthly. Green Light reflects Google Research’s commitment to use AI to address climate change and improve millions of lives in cities around the world…(More)”

Brazil hires OpenAI to cut costs of court battles


Article by Marcela Ayres and Bernardo Caram: “Brazil’s government is hiring OpenAI to expedite the screening and analysis of thousands of lawsuits using artificial intelligence (AI), trying to avoid costly court losses that have weighed on the federal budget.

The AI service will flag to government the need to act on lawsuits before final decisions, mapping trends and potential action areas for the solicitor general’s office (AGU).

AGU told Reuters that Microsoft would provide the artificial intelligence services from ChatGPT creator OpenAI through its Azure cloud-computing platform. It did not say how much Brazil will pay for the services.

Court-ordered debt payments have consumed a growing share of Brazil’s federal budget. The government estimated it would spend 70.7 billion reais ($13.2 billion) next year on judicial decisions where it can no longer appeal. The figure does not include small-value claims, which historically amount to around 30 billion reais annually.

The combined amount of over 100 billion reais represents a sharp increase from 37.3 billion reais in 2015. It is equivalent to about 1% of gross domestic product, or 15% more than the government expects to spend on unemployment insurance and wage bonuses to low-income workers next year.

AGU did not provide a reason for Brazil’s rising court costs…(More)”.

Using ChatGPT to Facilitate Truly Informed Medical Consent


Paper by Fatima N. Mirza: “Informed consent is integral to the practice of medicine. Most informed consent documents are written at a reading level that surpasses the reading comprehension level of the average American. Large language models, a type of artificial intelligence (AI) with the ability to summarize and revise content, present a novel opportunity to make the language used in consent forms more accessible to the average American and thus, improve the quality of informed consent. In this study, we present the experience of the largest health care system in the state of Rhode Island in implementing AI to improve the readability of informed consent documents, highlighting one tangible application for emerging AI in the clinical setting…(More)”.