Selected Readings on Big Data


The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of big data was originally published in 2014.

Big Data refers to the wide-scale collection, aggregation, storage, analysis and use of data. Government is increasingly in control of a massive amount of raw data that, when analyzed and put to use, can lead to new insights on everything from public opinion to environmental concerns. The burgeoning literature on Big Data argues that it generates value by: creating transparency; enabling experimentation to discover needs, expose variability, and improve performance; segmenting populations to customize actions; replacing/supporting human decision making with automated algorithms; and innovating new business models, products and services. The insights drawn from data analysis can also be visualized in a manner that passes along relevant information, even to those without the tech savvy to understand the data on its own terms (see The GovLab Selected Readings on Data Visualization).

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)

Australian Government Information Management Office. The Australian Public Service Big Data Strategy: Improved Understanding through Enhanced Data-analytics Capability Strategy Report. August 2013. http://bit.ly/17hs2xY.

  • This Big Data Strategy produced for Australian Government senior executives with responsibility for delivering services and developing policy is aimed at ingraining in government officials that the key to increasing the value of big data held by government is the effective use of analytics. Essentially, “the value of big data lies in [our] ability to extract insights and make better decisions.”
  • This positions big data as a national asset that can be used to “streamline service delivery, create opportunities for innovation, identify new service and policy approaches as well as supporting the effective delivery of existing programs across a broad range of government operations.”

Bollier, David. The Promise and Peril of Big Data. The Aspen Institute, Communications and Society Program, 2010. http://bit.ly/1a3hBIA.

  • This report captures insights from the 2009 Roundtable exploring uses of Big Data within a number of important consumer behavior and policy implication contexts.
  • The report concludes that, “Big Data presents many exciting opportunities to improve modern society. There are incalculable opportunities to make scientific research more productive, and to accelerate discovery and innovation. People can use new tools to help improve their health and well-being, and medical care can be made more efficient and effective. Government, too, has a great stake in using large databases to improve the delivery of government services and to monitor for threats to national security.
  • However, “Big Data also presents many formidable challenges to government and citizens precisely because data technologies are becoming so pervasive, intrusive and difficult to understand. How shall society protect itself against those who would misuse or abuse large databases? What new regulatory systems, private-law innovations or social practices will be capable of controlling anti-social behaviors–and how should we even define what is socially and legally acceptable when the practices enabled by Big Data are so novel and often arcane?”

Boyd, Danah and Kate Crawford. “Six Provocations for Big Data.” A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society. September 2011http://bit.ly/1jJstmz.

  • In this paper, Boyd and Crawford raise challenges to unchecked assumptions and biases regarding big data. The paper makes a number of assertions about the “computational culture” of big data and pushes back against those who consider big data to be a panacea.
  • The authors’ provocations for big data are:
    • Automating Research Changes the Definition of Knowledge
    • Claims to Objectivity and Accuracy are Misleading
    • Big Data is not always Better Data
    • Not all Data is Equivalent
    • Just Because it is accessible doesn’t make it ethical
    • Limited Access to Big Data creates New Digital Divide

The Economist Intelligence Unit. Big Data and the Democratisation of Decisions. October 2012. http://bit.ly/17MpH8L.

  • This report from the Economist Intelligence Unit focuses on the positive impact of big data adoption in the private sector, but its insights can also be applied to the use of big data in governance.
  • The report argues that innovation can be spurred by democratizing access to data, allowing a diversity of stakeholders to “tap data, draw lessons and make business decisions,” which in turn helps companies and institutions respond to new trends and intelligence at varying levels of decision-making power.

Manyika, James, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, and Angela Hung Byers. Big Data: The Next Frontier for Innovation, Competition, and Productivity.  McKinsey & Company. May 2011. http://bit.ly/18Q5CSl.

  • This report argues that big data “will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus, and that “leaders in every sector will have to grapple with the implications of big data.” 
  • The report offers five broad ways in which using big data can create value:
    • First, big data can unlock significant value by making information transparent and usable at much higher frequency.
    • Second, as organizations create and store more transactional data in digital form, they can collect more accurate and detailed performance information on everything from product inventories to sick days, and therefore expose variability and boost performance.
    • Third, big data allows ever-narrower segmentation of customers and therefore much more precisely tailored products or services.
    • Fourth, big sophisticated analytics can substantially improve decision-making.
    • Finally, big data can be used to improve the development of the next generation of products and services.

The Partnership for Public Service and the IBM Center for The Business of Government. “From Data to Decisions II: Building an Analytics Culture.” October 17, 2012. https://bit.ly/2EbBTMg.

  • This report discusses strategies for better leveraging data analysis to aid decision-making. The authors argue that, “Organizations that are successful at launching or expanding analytics program…systematically examine their processes and activities to ensure that everything they do clearly connects to what they set out to achieve, and they use that examination to pinpoint weaknesses or areas for improvement.”
  • While the report features many strategies for government decisions-makers, the central recommendation is that, “leaders incorporate analytics as a way of doing business, making data-driven decisions transparent and a fundamental approach to day-to-day management. When an analytics culture is built openly, and the lessons are applied routinely and shared widely, an agency can embed valuable management practices in its DNA, to the mutual benet of the agency and the public it serves.”

TechAmerica Foundation’s Federal Big Data Commission. “Demystifying Big Data: A Practical Guide to Transforming the Business of Government.” 2013. http://bit.ly/1aalUrs.

  • This report presents key big data imperatives that government agencies must address, the challenges and the opportunities posed by the growing volume of data and the value Big Data can provide. The discussion touches on the value of big data to businesses and organizational mission, presents case study examples of big data applications, technical underpinnings and public policy applications.
  • The authors argue that new digital information, “effectively captured, managed and analyzed, has the power to change every industry including cyber security, healthcare, transportation, education, and the sciences.” To ensure that this opportunity is realized, the report proposes a detailed big data strategy framework with the following steps: define, assess, plan, execute and review.

World Economic Forum. “Big Data, Big Impact: New Possibilities for International Development.” 2012. http://bit.ly/17hrTKW.

  • This report examines the potential for channeling the “flood of data created every day by the interactions of billions of people using computers, GPS devices, cell phones, and medical devices” into “actionable information that can be used to identify needs, provide services, and predict and prevent crises for the benefit of low-income populations”
  • The report argues that, “To realise the mutual benefits of creating an environment for sharing mobile-generated data, all ecosystem actors must commit to active and open participation. Governments can take the lead in setting policy and legal frameworks that protect individuals and require contractors to make their data public. Development organisations can continue supporting governments and demonstrating both the public good and the business value that data philanthropy can deliver. And the private sector can move faster to create mechanisms for the sharing data that can benefit the public.”

Big Data and the Future of Privacy


John Podesta at the White House blog: “Last Friday, the President spoke to the American people, and the international community, about how to keep us safe from terrorism in a changing world while upholding America’s commitment to liberty and privacy that our values and Constitution require. Our national security challenges are real, but that is surely not the only space where changes in technology are altering the landscape and challenging conceptions of privacy.
That’s why in his speech, the President asked me to lead a comprehensive review of the way that “big data” will affect the way we live and work; the relationship between government and citizens; and how public and private sectors can spur innovation and maximize the opportunities and free flow of this information while minimizing the risks to privacy. I will be joined in this effort by Secretary of Commerce Penny Pritzker, Secretary of Energy Ernie Moniz, the President’s Science Advisor John Holdren, the President’s Economic Advisor Gene Sperling and other senior government officials.
I would like to explain a little bit more about the review, its scope, and what you can expect over the next 90 days.
We are undergoing a revolution in the way that information about our purchases, our conversations, our social networks, our movements, and even our physical identities are collected, stored, analyzed and used. The immense volume, diversity and potential value of data will have profound implications for privacy, the economy, and public policy. The working group will consider all those issues, and specifically how the present and future state of these technologies might motivate changes in our policies across a range of sectors.
When we complete our work, we expect to deliver to the President a report that anticipates future technological trends and frames the key questions that the collection, availability, and use of “big data” raise – both for our government, and the nation as a whole. It will help identify technological changes to watch, whether those technological changes are addressed by the U.S.’s current policy framework and highlight where further government action, funding, research and consideration may be required.
This is going to be a collaborative effort. The President’s Council of Advisors on Science and Technology (PCAST) will conduct a study to explore in-depth the technological dimensions of the intersection of big data and privacy, which will feed into this broader effort. Our working group will consult with industry, civil liberties groups, technologists, privacy experts, international partners, and other national and local government officials on the significance of and future for these technologies. Finally, we will be working with a number of think tanks, academic institutions, and other organizations around the country as they convene stakeholders to discuss these very issues and questions. Likewise, many abroad are analyzing and responding to the challenge and seizing the opportunity of big data. These discussions will help to inform our study.
While we don’t expect to answer all these questions, or produce a comprehensive new policy in 90 days, we expect this work to serve as the foundation for a robust and forward-looking plan of action. Check back on this blog for updates on how you can get involved in the debate and for status updates on our progress.”

Use big data and crowdsourcing to detect nuclear proliferation, says DSB


FierceGovernmentIT: “A changing set of counter-nuclear proliferation problems requires a paradigm shift in monitoring that should include big data analytics and crowdsourcing, says a report from the Defense Science Board.
Much has changed since the Cold War when it comes to ensuring that nuclear weapons are subject to international controls, meaning that monitoring in support of treaties covering declared capabilities should be only one part of overall U.S. monitoring efforts, says the board in a January report (.pdf).
There are challenges related to covert operations, such as testing calibrated to fall below detection thresholds, and non-traditional technologies that present ambiguous threat signatures. Knowledge about how to make nuclear weapons is widespread and in the hands of actors who will give the United States or its allies limited or no access….
The report recommends using a slew of technologies including radiation sensors, but also exploitation of digital sources of information.
“Data gathered from the cyber domain establishes a rich and exploitable source for determining activities of individuals, groups and organizations needed to participate in either the procurement or development of a nuclear device,” it says.
Big data analytics could be used to take advantage of the proliferation of potential data sources including commercial satellite imaging, social media and other online sources.
The report notes that the proliferation of readily available commercial satellite imagery has created concerns about the introduction of more noise than genuine signal. “On balance, however, it is the judgment from the task force that more information from remote sensing systems, both commercial and dedicated national assets, is better than less information,” it says.
In fact, the ready availability of commercial imagery should be an impetus of governmental ability to find weak signals “even within the most cluttered and noisy environments.”
Crowdsourcing also holds potential, although the report again notes that nuclear proliferation analysis by non-governmental entities “will constrain the ability of the United States to keep its options open in dealing with potential violations.” The distinction between gathering information and making political judgments “will erode.”
An effort by Georgetown University students (reported in the Washington Post in 2011) to use open source data analyzing the network of tunnels used in China to hide its missile and nuclear arsenal provides a proof-of-concept on how crowdsourcing can be used to augment limited analytical capacity, the report says – despite debate on the students’ work, which concluded that China’s arsenal could be many times larger than conventionally accepted…
For more:
download the DSB report, “Assessment of Nuclear Monitoring and Verification Technologies” (.pdf)
read the WaPo article on the Georgetown University crowdsourcing effort”

Needed: A New Generation of Game Changers to Solve Public Problems


Beth Noveck: “In order to change the way we govern, it is important to train and nurture a new generation of problem solvers who possess the multidisciplinary skills to become effective agents of change. That’s why we at the GovLab have launched The GovLab Academy with the support of the Knight Foundation.
In an effort to help people in their own communities become more effective at developing and implementing creative solutions to compelling challenges, The Gov Lab Academy is offering two new training programs:
1) An online platform with an unbundled and evolving set of topics, modules and instructors on innovations in governance, including themes such as big and open data and crowdsourcing and forthcoming topics on behavioral economics, prizes and challenges, open contracting and performance management for governance;
2) Gov 3.0: A curated and sequenced, 14-week mentoring and training program.
While the online-platform is always freely available, Gov 3.0 begins on January 29, 2014 and we invite you to to participate. Please forward this email to your networks and help us spread the word about the opportunity to participate.
Please consider applying (individuals or teams may apply), if you are:

  • an expert in communications, public policy, law, computer science, engineering, business or design who wants to expand your ability to bring about social change;

  • a public servant who wants to bring innovation to your job;

  • someone with an important idea for positive change but who lacks key skills or resources to realize the vision;

  • interested in joining a network of like-minded, purpose-driven individuals across the country; or

  • someone who is passionate about using technology to solve public problems.

The program includes live instruction and conversation every Wednesday from 5:00– 6:30 PM EST for 14 weeks starting Jan 29, 2014. You will be able to participate remotely via Google Hangout.

Gov 3.0 will allow you to apply evolving technology to the design and implementation of effective solutions to public interest challenges. It will give you an overview of the most current approaches to smarter governance and help you improve your skills in collaboration, communication, and developing and presenting innovative ideas.

Over 14 weeks, you will develop a project and a plan for its implementation, including a long and short description, a presentation deck, a persuasive video and a project blog. Last term’s projects covered such diverse issues as post-Fukushima food safety, science literacy for high schoolers and prison reform for the elderly. In every case, the goal was to identify realistic strategies for making a difference quickly.  You can read the entire Gov 3.0 syllabus here.

The program will include national experts and instructors in technology and governance both as guests and as mentors to help you design your project. Last term’s mentors included current and former officials from the White House and various state, local and international governments, academics from a variety of fields, and prominent philanthropists.

People who complete the program will have the opportunity to apply for a special fellowship to pursue their projects further.

Previously taught only on campus, we are offering Gov 3.0 in beta as an online program. This is not a MOOC. It is a mentoring-intensive coaching experience. To maximize the quality of the experience, enrollment is limited.

Please submit your application by January 22, 2014. Accepted applicants (individuals and teams) will be notified on January 24, 2014. We hope to expand the program in the future so please use the same form to let us know if you would like to be kept informed about future opportunities.”

From funding agencies to scientific agency –


New paper on “Collective allocation of science funding as an alternative to peer review”: “Publicly funded research involves the distribution of a considerable amount of money. Funding agencies such as the US National Science Foundation (NSF), the US National Institutes of Health (NIH) and the European Research Council (ERC) give billions of dollars or euros of taxpayers’ money to individual researchers, research teams, universities, and research institutes each year. Taxpayers accordingly expect that governments and funding agencies will spend their money prudently and efficiently.

Investing money to the greatest effect is not a challenge unique to research funding agencies and there are many strategies and schemes to choose from. Nevertheless, most funders rely on a tried and tested method in line with the tradition of the scientific community: the peer review of individual proposals to identify the most promising projects for funding. This method has been considered the gold standard for assessing the scientific value of research projects essentially since the end of the Second World War.

However, there is mounting critique of the use of peer review to direct research funding. High on the list of complaints is the cost, both in terms of time and money. In 2012, for example, NSF convened more than 17,000 scientists to review 53,556 proposals [1]. Reviewers generally spend a considerable time and effort to assess and rate proposals of which only a minority can eventually get funded. Of course, such a high rejection rate is also frustrating for the applicants. Scientists spend an increasing amount of time writing and submitting grant proposals. Overall, the scientific community invests an extraordinary amount of time, energy, and effort into the writing and reviewing of research proposals, most of which end up not getting funded at all. This time would be better invested in conducting the research in the first place.

Peer review may also be subject to biases, inconsistencies, and oversights. The need for review panels to reach consensus may lead to sub‐optimal decisions owing to the inherently stochastic nature of the peer review process. Moreover, in a period where the money available to fund research is shrinking, reviewers may tend to “play it safe” and select proposals that have a high chance of producing results, rather than more challenging and ambitious projects. Additionally, the structuring of funding around calls‐for‐proposals to address specific topics might inhibit serendipitous discovery, as scientists work on problems for which funding happens to be available rather than trying to solve more challenging problems.

The scientific community holds peer review in high regard, but it may not actually be the best possible system for identifying and supporting promising science. Many proposals have been made to reform funding systems, ranging from incremental changes to peer review—including careful selection of reviewers [2] and post‐hoc normalization of reviews [3]—to more radical proposals such as opening up review to the entire online population [4] or removing human reviewers altogether by allocating funds through an objective performance measure [5].

We would like to add another alternative inspired by the mathematical models used to search the internet for relevant information: a highly decentralized funding model in which the wisdom of the entire scientific community is leveraged to determine a fair distribution of funding. It would still require human insight and decision‐making, but it would drastically reduce the overhead costs and may alleviate many of the issues and inefficiencies of the proposal submission and peer review system, such as bias, “playing it safe”, or reluctance to support curiosity‐driven research.

Our proposed system would require funding agencies to give all scientists within their remit an unconditional, equal amount of money each year. However, each scientist would then be required to pass on a fixed percentage of their previous year’s funding to other scientists whom they think would make best use of the money (Fig 1). Every year, then, scientists would receive a fixed basic grant from their funding agency combined with an elective amount of funding donated by their peers. As a result of each scientist having to distribute a given percentage of their previous year’s budget to other scientists, money would flow through the scientific community. Scientists who are generally anticipated to make the best use of funding will accumulate more.”

The Failure and the Promise of Public Participation


Dr. Mark Funkhouser in Governing: “In a recent study entitled Making Public Participation Legal, Matt Leighninger cites a Knight Foundation report that found that attending a public meeting was more likely to reduce a person’s sense of efficacy and attachment to the community than to increase it. That sad fact is no surprise to the government officials who have to run — and endure — public meetings.
Every public official who has served for any length of time has horror stories about these forums. The usual suspects show up — the self-appointed activists (who sometimes seem to be just a little nuts) and the lobbyists. Regular folks have made the calculation that only in extreme circumstance, when they are really scared or angry, is attending a public hearing worth their time. And who can blame them when it seems clear that the game is rigged, the decisions already have been made, and they’ll probably have to sit through hours of blather before they get their three minutes at the microphone?
So much transparency and yet so little trust. Despite the fact that governments are pumping out more and more information to citizens, trust in government has edged lower and lower, pushed in part no doubt by the lingering economic hardships and government cutbacks resulting from the recession. Most public officials I talk to now take it as an article of faith that the public generally disrespects them and the governments they work for.
Clearly the relationship between citizens and their governments needs to be reframed. Fortunately, over the last couple of decades lots of techniques have been developed by advocates of deliberative democracy and citizen participation that provide both more meaningful engagement and better community outcomes. There are decision-making forums, “visioning” forums and facilitated group meetings, most of which feature some combination of large-group, small-group and online interactions.
But here’s the rub: Our legal framework doesn’t support these new methods of public participation. This fact is made clear in Making Public Participation Legal, which was compiled by a working group that included people from the National Civic League, the American Bar Association, the International City/County Management Association and a number of leading practitioners of public participation.
The requirements for public meetings in local governments are generally built into state statutes such as sunshine or open-meetings laws or other laws governing administrative procedures. These laws may require public hearings in certain circumstances and mandate that advance notice, along with an agenda, be posted for any meeting of an “official body” — from the state legislature to a subcommittee of the city council or an advisory board of some kind. And a “meeting” is one in which a quorum attends. So if three of a city council’s nine members sit on the finance committee and two of the committee members happen to show up at a public meeting, they may risk having violated the open-meetings law…”

Why the Nate Silvers of the World Don’t Know Everything


Felix Salmon in Wired: “This shift in US intelligence mirrors a definite pattern of the past 30 years, one that we can see across fields and institutions. It’s the rise of the quants—that is, the ascent to power of people whose native tongue is numbers and algorithms and systems rather than personal relationships or human intuition. Michael Lewis’ Moneyball vividly recounts how the quants took over baseball, as statistical analy­sis trumped traditional scouting and propelled the underfunded Oakland A’s to a division-winning 2002 season. More recently we’ve seen the rise of the quants in politics. Commentators who “trusted their gut” about Mitt Romney’s chances had their gut kicked by Nate Silver, the stats whiz who called the election days before­hand as a lock for Obama, down to the very last electoral vote in the very last state.
The reason the quants win is that they’re almost always right—at least at first. They find numerical patterns or invent ingenious algorithms that increase profits or solve problems in ways that no amount of subjective experience can match. But what happens after the quants win is not always the data-driven paradise that they and their boosters expected. The more a field is run by a system, the more that system creates incentives for everyone (employees, customers, competitors) to change their behavior in perverse ways—providing more of whatever the system is designed to measure and produce, whether that actually creates any value or not. It’s a problem that can’t be solved until the quants learn a little bit from the old-fashioned ways of thinking they’ve displaced.
No matter the discipline or industry, the rise of the quants tends to happen in four stages. Stage one is what you might call pre-disruption, and it’s generally best visible in hindsight. Think about quaint dating agencies in the days before the arrival of Match .com and all the other algorithm-powered online replacements. Or think about retail in the era before floor-space management analytics helped quantify exactly which goods ought to go where. For a live example, consider Hollywood, which, for all the money it spends on market research, is still run by a small group of lavishly compensated studio executives, all of whom are well aware that the first rule of Hollywood, as memorably summed up by screenwriter William Goldman, is “Nobody knows anything.” On its face, Hollywood is ripe for quantifi­cation—there’s a huge amount of data to be mined, considering that every movie and TV show can be classified along hundreds of different axes, from stars to genre to running time, and they can all be correlated to box office receipts and other measures of profitability.
Next comes stage two, disruption. In most industries, the rise of the quants is a recent phenomenon, but in the world of finance it began back in the 1980s. The unmistakable sign of this change was hard to miss: the point at which you started getting targeted and personalized offers for credit cards and other financial services based not on the relationship you had with your local bank manager but on what the bank’s algorithms deduced about your finances and creditworthiness. Pretty soon, when you went into a branch to inquire about a loan, all they could do was punch numbers into a computer and then give you the computer’s answer.
For a present-day example of disruption, think about politics. In the 2012 election, Obama’s old-fashioned campaign operatives didn’t disappear. But they gave money and freedom to a core group of technologists in Chicago—including Harper Reed, former CTO of the Chicago-based online retailer Threadless—and allowed them to make huge decisions about fund-raising and voter targeting. Whereas earlier campaigns had tried to target segments of the population defined by geography or demographic profile, Obama’s team made the campaign granular right down to the individual level. So if a mom in Cedar Rapids was on the fence about who to vote for, or whether to vote at all, then instead of buying yet another TV ad, the Obama campaign would message one of her Facebook friends and try the much more effective personal approach…
After disruption, though, there comes at least some version of stage three: over­shoot. The most common problem is that all these new systems—metrics, algo­rithms, automated decisionmaking processes—result in humans gaming the system in rational but often unpredictable ways. Sociologist Donald T. Campbell noted this dynamic back in the ’70s, when he articulated what’s come to be known as Campbell’s law: “The more any quantitative social indicator is used for social decision-making,” he wrote, “the more subject it will be to corruption pressures and the more apt it will be to distort and corrupt the social processes it is intended to monitor.”…
Policing is a good example, as explained by Harvard sociologist Peter Moskos in his book Cop in the Hood: My Year Policing Baltimore’s Eastern District. Most cops have a pretty good idea of what they should be doing, if their goal is public safety: reducing crime, locking up kingpins, confiscating drugs. It involves foot patrols, deep investigations, and building good relations with the community. But under statistically driven regimes, individual officers have almost no incentive to actually do that stuff. Instead, they’re all too often judged on results—specifically, arrests. (Not even convictions, just arrests: If a suspect throws away his drugs while fleeing police, the police will chase and arrest him just to get the arrest, even when they know there’s no chance of a conviction.)…
It’s increasingly clear that for smart organizations, living by numbers alone simply won’t work. That’s why they arrive at stage four: synthesis—the practice of marrying quantitative insights with old-fashioned subjective experience. Nate Silver himself has written thoughtfully about examples of this in his book, The Signal and the Noise. He cites baseball, which in the post-Moneyball era adopted a “fusion approach” that leans on both statistics and scouting. Silver credits it with delivering the Boston Red Sox’s first World Series title in 86 years. Or consider weather forecasting: The National Weather Service employs meteorologists who, understanding the dynamics of weather systems, can improve forecasts by as much as 25 percent compared with computers alone. A similar synthesis holds in eco­nomic forecasting: Adding human judgment to statistical methods makes results roughly 15 percent more accurate. And it’s even true in chess: While the best computers can now easily beat the best humans, they can in turn be beaten by humans aided by computers….
That’s what a good synthesis of big data and human intuition tends to look like. As long as the humans are in control, and understand what it is they’re controlling, we’re fine. It’s when they become slaves to the numbers that trouble breaks out. So let’s celebrate the value of disruption by data—but let’s not forget that data isn’t everything.

Entrepreneurs Shape Free Data Into Money


Angus Loten in the Wall Street Journal: “More cities are putting information on everything from street-cleaning schedules to police-response times and restaurant inspection reports in the public domain, in the hope that people will find a way to make money off the data.
Supporters of such programs often see them as a local economic stimulus plan, allowing software developers and entrepreneurs in cities ranging from San Francisco to South Bend, Ind., to New York, to build new businesses based on the information they get from government websites.
When Los Angeles Mayor Eric Garcetti issued an executive directive last month to launch the city’s open-data program, he cited entrepreneurs and businesses as important beneficiaries. Open-data promotes innovation and “gives companies, individuals, and nonprofit organizations the opportunity to leverage one of government’s greatest assets: public information,” according to the Dec. 18 directive.
A poster child for the movement might be 34-year-old Matt Ehrlichman of Seattle, who last year built an online business in part using Seattle work permits, professional licenses and other home-construction information gathered up by the city’s Department of Planning and Development.
While his website is free, his business, called Porch.com, has more than 80 employees and charges a $35 monthly fee to industry professionals who want to boost the visibility of their projects on the site.
The site gathers raw public data—such as addresses for homes under renovation, what they are doing, who is doing the work and how much they are charging—and combines it with photos and other information from industry professionals and homeowners. It then creates a searchable database for users to compare ideas and costs for projects near their own neighborhood.
…Ian Kalin, director of open-data services at Socrata, a Seattle-based software firm that makes the back-end applications for many of these government open-data sites, says he’s worked with hundreds of companies that were formed around open data.
Among them is Climate Corp., a San Francisco-based firm that collects weather and yield-forecasting data to help farmers decide when and where to plant crops. Launched in 2006, the firm was acquired in October by Monsanto Co. MON -2.90% , the seed-company giant, for $930 million.
Overall, the rate of new business formation declined nationally between 2006 and 2010. But according to the latest data from the Ewing Marion Kauffman Foundation, an entrepreneurship advocacy group in Kansas City, Mo., the rate of new business formation in Seattle in 2011 rose 9.41% in 2011, compared with the national average of 3.9%.
Other cities where new business formation was ahead of the national average include Chicago, Austin, Texas, Baltimore, and South Bend, Ind.—all cities that also have open-data programs. Still, how effective the ventures are in creating jobs is difficult to gauge.
One wrinkle: privacy concerns about the potential for information—such as property tax and foreclosure data—to be misused.
Some privacy advocates fear that government data that include names, addresses and other sensitive information could be used by fraudsters to target victims.”

Walgreens Taps Crowdsourcing to Deliver Cold Medicine to Shut-Ins


Mashable: “Walgreens is reaching out to consumers who are so walloped with a cold or flu that a trip to the corner drugstore seems an insurmountable obstacle.
The national drug chain is partnering with TaskRabbit, the online mobile marketplace, to allow deliveries of over-the-counter cold medicine in any of the 19 cities in which TaskRabbit is available. Such deliveries can be made via TaskRabbit’s iOS app or on its website. Standard TaskRabbit rates apply including a 20% service charge and a runner’s fee. So if a runner’s fee is $10, you would pay an additional $12 plus the cost of your cold medicine, to get the delivery.
The partnership, arranged by OMD’s Ignition Factory, runs this week through Feb. 18, typically the weeks in which cold and flu complaints have the sharpest increases. During that time, the Walgreens option will appear in TaskRabbit’s iOS app’s Task Wheel and on the website. Though TaskRabbit has partnered with other national brands, including Pepsi, this is its first with a retailer.
However, the deal is more of a pr exercise than anything else: Consumers have had the ability arrange a TaskRabbit to shop and buy cold medicine at Walgreens prior to the agreement. The chain is hoping to raise awareness about this option, though.
“We just wanted to make it as easy as possible,” says Wilson Standish, project manager at Ignition Factory. “When you’re sick, you don’t even want to get out of bed.”

Crowdsourcing Social Problems


Article by   in Reason: “reCAPTCHA and Duolingo both represent a distinctly 21st-century form of distributed problem solving. These Internet-enabled approaches tend to be faster, far less expensive, and far more resilient than the heavyweight industrial-age methods of solving big social problems that we’ve grown accustomed to over the past century. They typically involve highly diverse resources-volunteer time, crowdfunding, the capabilities of multinational corporations, entrepreneurial capital, philanthropic funding-aligned around common objectives such as reducing congestion, providing safe drinking water, or promoting healthy living. Crowdsourcing offers not just a better way of doing things, but a radical challenge to the bureaucratic status quo.
Here are several ways public, private, and nonprofit organizations can use lightweight, distributed approaches to solve societal problems faster and cheaper than the existing sclerotic models.
Chunk the Problem
The genius of reCAPTCHA and Duolingo is that they divide labor into small increments, performed for free, often by people who are unaware of the project they’re helping to complete. This strategy has wide public-policy applications, even in dealing with potholes….
Meanwhile, Finland’s DigitalKoot project enlisted volunteers to digitize their own libraries by playing a computer game that challenged them to transcribe scans of antique manuscripts.
Governments can set up a microtasking platform, not just for citizen engagement but as a way to harness the knowledge and skills of public employees across multiple departments and agencies. If microtasking can work to connect people outside the “four walls” of an organization, think of its potential as a platform to connect people and conduct work inside an organization-even an organization as bureaucratic as government.

Decentralize Service to the Self
A young woman slices her finger on a knife. As she compresses the bleeding with gauze, she needs to know if her wound warrants stitches. So she calls up Blue Cross’ 24-hour nurse hotline, where patients call to learn if they should see a doctor. The nurse asks her to describe the depth of the cut. He explains she should compress it with gauze and skip the ER. In aggregate, savings like this amount to millions of dollars of avoided emergency room visits.
Since 2003, Blue Cross has been shifting the work of basic triage and risk mitigation to customers. Britain’s National Health Service (NHS) implemented a similar program, NHS Direct, in 1998. NHS estimates that the innovation has saved it £44 million a year….
Gamify Drudgery
Finland’s national library houses an enormous archive of antique texts, which officials hoped to scan and digitize into ordinary, searchable text documents. Rather than simply hire people for the tedium of correcting garbled OCR scans, the library invited the public to play a game. An online program called DigitalKoot lets people transcribe scanned words, and by typing accurately, usher a series of cartoon moles safely across a bridge….
Build a Two-Sided Market
Road infrastructure costs government five cents per driver per mile, according to the Victoria Transport Policy Institute. “That’s a dollar the government paid for the paving of that road and the maintaining of that infrastructure…just for you, not the other 3,000 people that travelled that same segment of highway in that same hour that you did,” says Sean O’Sullivan, founder of Carma, a ridesharing application.
Ridesharing companies such as Carma, Lyft, and Zimride are attempting to recruit private cars for the public transit network, by letting riders pay a small fee to carpool. A passenger waits at a designated stop, and the app alerts drivers, who can scan a profile of their potential rider. It’s a prime example of a potent new business model…
Remove the Middleman
John McNair dropped out of high school at age 16. By his thirties, he became an entrepreneur, producing and selling handmade guitars, but carpentry alone wouldn’t grow his business. So the founder of Red Dog Guitars enrolled in a $20 class on Skillshare.com, taught by the illustrator John Contino, to learn to brand his work with hand lettered product labels. Soon, a fellow businessman was asking McNair for labels to market guitar pickups.
Traditionally, the U.S. government might invest in retraining someone like John. Instead, peer-to-peer technology has allowed a community of designers to help John develop his skills. Peer-to-peer strategies enable citizens to meet each other’s needs, cheaply. Peer-to-peer solutions can help fix problems, deliver services, and supplement traditional approaches.
Peer-to-peer can lessen our dependence on big finance. Kickstarter lets companies skip the energy of convincing a banker that their product is viable. They just need to convince customers…”