Techlash? America’s Growing Concern with Major Technology Companies


Press Release: “Just a few years ago, Americans were overwhelmingly optimistic about the power of new technologies to foster an informed and engaged society. More recently, however, that confidence has been challenged by emerging concerns over the role that internet and technology companies — especially social media — now play in our democracy.

A new Knight Foundation and Gallup study explores how much the landscape has shifted. This wide-ranging study confirms that, for Americans, the techlash is real, widespread, and bipartisan. From concerns about the spread of misinformation to election interference and data privacy, we’ve documented the deep pessimism of folks across the political spectrum who believe tech companies have too much power — and that they do more harm than good. 

Despite their shared misgivings, Americans are deeply divided on how best to address these challenges. This report explores the contours of the techlash in the context of the issues currently animating policy debates in Washington and Silicon Valley. Below are the main findings from the executive summary….

  • 77% of Americans say major internet and technology companies like Facebook, Google, Amazon and Apple have too muchpower.
  • Americans are equally divided among those who favor (50%) and oppose (49%) government intervention that would require internet and technology companies to break into smaller companies. 
  • Americans do not trust social media companies much (44%) or at all (40%) to make the right decisions about what content should or should not be allowed on online platforms.
  • However, they would still prefer the companies (55%) to make those decisions rather than the government (44%). …(More)

Milwaukee’s Amani Neighborhood Uses Data to Target Traffic Safety and Build Trust


Article by Kassie Scott: “People in Milwaukee’s Amani neighborhood are using data to identify safety issues and build relationships with the police. It’s a story of community-engaged research at its best.

In 2017, the Milwaukee Police Department received a grant under the federal Byrne Criminal Justice Innovation program, now called the Community Based Crime Reduction Program, whose purpose is to bridge the gap between practitioners and researchers and advance the use of data in making communities safer. Because of its close ties in the Amani neighborhood, the Dominican Center was selected to lead this initiative, known as the Amani Safety Initiative, and they partnered with local churches, the district attorney’s office, LISC-Milwaukee, and others. To support the effort with data and coaching, the police department contracted with Data You Can Use.

Together with Data You Can Use, the Amani Safety Initiative team first implemented a survey to gauge perceptions of public safety and police legitimacy. Neighborhood ambassadors were trained (and paid) to conduct the survey themselves, going door to door to gather the information from nearly 300 of their neighbors. The ambassadors shared these results with their neighborhood during what they called “data chats.” They also printed summary survey results on door hangers, which they distributed throughout the neighborhood.

Neighbors and community organizations were surprised by the survey results. Though violent crime and mistrust in the police were commonly thought to be the biggest issues, the data showed that residents were most concerned about traffic safety. Ultimately, residents decided to post slow-down signs in intersections.

This project stands out for letting the people in the neighborhood lead the way. Neighbors collected data, shared results, and took action. The partnership between neighbors, police, and local organizations shows how people can drive decision-making for their neighborhood.

The larger story is one of social cohesion and mutual trust. Through participating in the initiative and learning more about their neighborhood, Amani neighbors built stronger relationships with the police. The police began coming to neighborhood community meetings, which helped them build relationships with people in the community and understand the challenges they face….(More).

Is Your Data Being Collected? These Signs Will Tell You Where


Flavie Halais at Wired: “Alphabet’s Sidewalk Labs is testing icons that provide “digital transparency” when information is collected in public spaces….

As cities incorporate digital technologies into their landscapes, they face the challenge of informing people of the many sensors, cameras, and other smart technologies that surround them. Few people have the patience to read through the lengthy privacy notice on a website or smartphone app. So how can a city let them know how they’re being monitored?

Sidewalk Labs, the Google sister company that applies technology to urban problems, is taking a shot. Through a project called Digital Transparency in the Public Realm, or DTPR, the company is demonstrating a set of icons, to be displayed in public spaces, that shows where and what kinds of data are being collected. The icons are being tested as part Sidewalk Labs’ flagship project in Toronto, where it plans to redevelop a 12-acre stretch of the city’s waterfront. The signs would be displayed at each location where data would be collected—streets, parks, businesses, and courtyards.

Data collection is a core feature of the project, called Sidewalk Toronto, and the source of much of the controversy surrounding it. In 2017, Waterfront Toronto, the organization in charge of administering the redevelopment of the city’s eastern waterfront, awarded Sidewalk Labs the contract to develop the waterfront site. The project has ambitious goals: It says it could create 44,000 direct jobs by 2040 and has the potential to be the largest “climate-positive” community—removing more CO2 from the atmosphere than it produces—in North America. It will make use of new urban technology like modular street pavers and underground freight delivery. Sensors, cameras, and Wi-Fi hotspots will monitor and control traffic flows, building temperature, and crosswalk signals.

All that monitoring raises inevitable concerns about privacy, which Sidewalk aims to address—at least partly—by posting signs in the places where data is being collected.

The signs display a set of icons in the form of stackable hexagons, derived in part from a set of design rules developed by Google in 2014. Some describe the purpose for collecting the data (mobility, energy efficiency, or waste management, for example). Others refer to the type of data that’s collected, such as photos, air quality, or sound. When the data is identifiable, meaning it can be associated with a person, the hexagon is yellow. When the information is stripped of personal identifiers, the hexagon is blue…(More)”.

Accelerating AI with synthetic data


Essay by Khaled El Emam: “The application of artificial intelligence and machine learning to solve today’s problems requires access to large amounts of data. One of the key obstacles faced by analysts is access to this data (for example, these issues were reflected in reports from the General Accountability Office and the McKinsey Institute).

Synthetic data can help solve this data problem in a privacy preserving manner.

What is synthetic data ?

Data synthesis is an emerging privacy-enhancing technology that can enable access to realistic data, which is information that may be synthetic, but has the properties of an original dataset. It also simultaneously ensures that such information can be used and disclosed with reduced obligations under contemporary privacy statutes. Synthetic data retains the statistical properties of the original data. Therefore, there are an increasing number of use cases where it would serve as a proxy for real data.

Synthetic data is created by taking an original (real) dataset and then building a model to characterize the distributions and relationships in that data — this is called the “synthesizer.” The synthesizer is typically an artificial neural network or other machine learning technique that learns these (original) data characteristics. Once that model is created, it can be used to generate synthetic data. The data is generated from the model and does not have a 1:1 mapping to real data, meaning that the likelihood of mapping the synthetic records to real individuals would be very small — it is not considered personal information.

Many different types of data can be synthesized, including images, video, audio, text and structured data. The main focus in this article is on the synthesis of structured data.

Even though data can be generated in this manner, that does not mean it cannot be personal information. If the synthesizer is overfit to real data, then the generated data will replicate the original real data. Therefore, the synthesizer has to be constructed in a manner to avoid such overfitting. A formal privacy assurance should also be performed on the synthesized data to validate that there is a weak mapping between synthetic records to individuals….(More)”.

Monitoring of the Venezuelan exodus through Facebook’s advertising platform


Paper by Palotti et al: “Venezuela is going through the worst economical, political and social crisis in its modern history. Basic products like food or medicine are scarce and hyperinflation is combined with economic depression. This situation is creating an unprecedented refugee and migrant crisis in the region. Governments and international agencies have not been able to consistently leverage reliable information using traditional methods. Therefore, to organize and deploy any kind of humanitarian response, it is crucial to evaluate new methodologies to measure the number and location of Venezuelan refugees and migrants across Latin America.

In this paper, we propose to use Facebook’s advertising platform as an additional data source for monitoring the ongoing crisis. We estimate and validate national and sub-national numbers of refugees and migrants and break-down their socio-economic profiles to further understand the complexity of the phenomenon. Although limitations exist, we believe that the presented methodology can be of value for real-time assessment of refugee and migrant crises world-wide….(More)”.

Government by Algorithm: Artificial Intelligence in Federal Administrative Agencies


The Administrative Conference of the United States: “Artificial intelligence (AI) promises to transform how government agencies do their work. Rapid developments in AI have the potential to reduce the cost of core governance functions, improve the quality of decisions, and unleash the power of administrative data, thereby making government performance more efficient and effective. Agencies that use AI to realize these gains will also confront important questions about the proper design of algorithms and user interfaces, the respective scope of human and machine decision-making, the boundaries between public actions and private contracting, their own capacity to learn over time using AI, and whether the use of AI is even permitted.

These are important issues for public debate and academic inquiry. Yet little is known about how agencies are currently using AI systems beyond a few headlinegrabbing examples or surface-level descriptions. Moreover, even amidst growing public and  scholarly discussion about how society might regulate government use of AI, little attention has been devoted to how agencies acquire such tools in the first place or oversee their use. In an effort to fill these gaps, the Administrative Conference of the United States (ACUS) commissioned this report from researchers at Stanford University and New York University. The research team included a diverse set of lawyers, law students, computer scientists, and social scientists with the capacity to analyze these cutting-edge issues from technical, legal, and policy angles. The resulting report offers three cuts at federal agency use of AI:

  • a rigorous canvass of AI use at the 142 most significant federal departments, agencies, and sub-agencies (Part I)
  • a series of in-depth but accessible case studies of specific AI applications at seven leading agencies covering a range of governance tasks (Part II); and
  • a set of cross-cutting analyses of the institutional, legal, and policy challenges raised by agency use of AI (Part III)….(More)”

How Philanthropy Can Help Lead on Data Justice


Louise Lief at Stanford Social Innovation Review: “Today, data governs almost every aspect of our lives, shaping the opportunities we have, how we perceive reality and understand problems, and even what we believe to be possible. Philanthropy is particularly data driven, relying on it to inform decision-making, define problems, and measure impact. But what happens when data design and collection methods are flawed, lack context, or contain critical omissions and misdirected questions? With bad data, data-driven strategies can misdiagnose problems and worsen inequities with interventions that don’t reflect what is needed.

Data justice begins by asking who controls the narrative. Who decides what data is collected and for which purpose? Who interprets what it means for a community? Who governs it? In recent years, affected communities, social justice philanthropists, and academics have all begun looking deeper into the relationship between data and social justice in our increasingly data-driven world. But philanthropy can play a game-changing role in developing practices of data justice to more accurately reflect the lived experience of communities being studied. Simply incorporating data justice principles into everyday foundation practice—and requiring it of grantees—would be transformative: It would not only revitalize research, strengthen communities, influence policy, and accelerate social change, it would also help address deficiencies in current government data sets.

When Data Is Flawed

Some of the most pioneering work on data justice has been done by Native American communities, who have suffered more than most from problems with bad data. A 2017 analysis of American Indian data challenges—funded by the W.K. Kellogg Foundation and the Morris K. Udall and Stewart L. Udall Foundation—documented how much data on Native American communities is of poor quality, inaccurate, inadequate, inconsistent, irrelevant, and/or inaccessible. The National Congress of American Indians even described American Native communities as “The Asterisk Nation,” because in many government data sets they are represented only by an asterisk denoting sampling errors instead of data points.

Where it concerns Native Americans, data is often not standardized and different government databases identify tribal members at least seven different ways using different criteria; federal and state statistics often misclassify race and ethnicity; and some data collection methods don’t allow tribes to count tribal citizens living off the reservation. For over a decade the Department of the Interior’s Bureau of Indian Affairs has struggled to capture the data it needs for a crucial labor force report it is legally required to produce; methodology errors and reporting problems have been so extensive that at times it prevented the report from even being published. But when the Department of the Interior changed several reporting requirements in 2014 and combined data submitted by tribes with US Census data, it only compounded the problem, making historical comparisons more difficult. Moreover, Native Americans have charged that the Census Bureau significantly undercounts both the American Indian population and key indicators like joblessness….(More)”.

This emoji could mean your suicide risk is high, according to AI


Rebecca Ruiz at Mashable: “Since its founding in 2013, the free mental health support service Crisis Text Line has focused on using data and technology to better aid those who reach out for help. 

Unlike helplines that offer assistance based on the order in which users dialed, texted, or messaged, Crisis Text Line has an algorithm that determines who is in most urgent need of counseling. The nonprofit is particularly interested in learning which emoji and words texters use when their suicide risk is high, so as to quickly connect them with a counselor. Crisis Text Line just released new insights about those patterns. 

Based on its analysis of 129 million messages processed between 2013 and the end of 2019, the nonprofit found that the pill emoji, or ?, was 4.4 times more likely to end in a life-threatening situation than the word suicide. 

Other words that indicate imminent danger include 800mg, acetaminophen, excedrin, and antifreeze; those are two to three times more likely than the word suicide to involve an active rescue of the texter. The loudly crying emoji face, or ?, is similarly high-risk. In general, the words that trigger the greatest alarm suggest the texter has a method or plan to attempt suicide or may be in the process of taking their own life. …(More)”.

Twitter might have a better read on floods than NOAA


Interview by By Justine Calma: “Frustrated tweets led scientists to believe that tidal floods along the East Coast and Gulf Coast of the US are more annoying than official tide gauges suggest. Half a million geotagged tweets showed researchers that people were talking about disruptively high waters even when government gauges hadn’t recorded tide levels high enough to be considered a flood.

Capturing these reactions on social media can help authorities better understand and address the more subtle, insidious ways that climate change is playing out in peoples’ daily lives. Coastal flooding is becoming a bigger problem as sea levels rise, but a study published recently in the journal Nature Communications suggests that officials aren’t doing a great job of recording that.

The Verge spoke with Frances Moore, lead author of the new study and a professor at the University of California, Davis. This isn’t the first time that she’s turned to Twitter for her climate research. Her previous research also found that people tend to stop reacting to unusual weather after dealing with it for a while — sometimes in as little as two years. Similar data from Twitter has been used to study how people coped with earthquakes and hurricanes…(More)”.

An Algorithm That Grants Freedom, or Takes It Away


Cade Metz and Adam Satariano at The New York Times: “…In Philadelphia, an algorithm created by a professor at the University of Pennsylvania has helped dictate the experience of probationers for at least five years.

The algorithm is one of many making decisions about people’s lives in the United States and Europe. Local authorities use so-called predictive algorithms to set police patrols, prison sentences and probation rules. In the Netherlands, an algorithm flagged welfare fraud risks. A British city rates which teenagers are most likely to become criminals.

Nearly every state in America has turned to this new sort of governance algorithm, according to the Electronic Privacy Information Center, a nonprofit dedicated to digital rights. Algorithm Watch, a watchdog in Berlin, has identified similar programs in at least 16 European countries.

As the practice spreads into new places and new parts of government, United Nations investigators, civil rights lawyers, labor unions and community organizers have been pushing back.

They are angered by a growing dependence on automated systems that are taking humans and transparency out of the process. It is often not clear how the systems are making their decisions. Is gender a factor? Age? ZIP code? It’s hard to say, since many states and countries have few rules requiring that algorithm-makers disclose their formulas.

They also worry that the biases — involving race, class and geography — of the people who create the algorithms are being baked into these systems, as ProPublica has reported. In San Jose, Calif., where an algorithm is used during arraignment hearings, an organization called Silicon Valley De-Bug interviews the family of each defendant, takes this personal information to each hearing and shares it with defenders as a kind of counterbalance to algorithms.

Two community organizers, the Media Mobilizing Project in Philadelphia and MediaJustice in Oakland, Calif., recently compiled a nationwide database of prediction algorithms. And Community Justice Exchange, a national organization that supports community organizers, is distributing a 50-page guide that advises organizers on how to confront the use of algorithms.

The algorithms are supposed to reduce the burden on understaffed agencies, cut government costs and — ideally — remove human bias. Opponents say governments haven’t shown much interest in learning what it means to take humans out of the decision making. A recent United Nations report warned that governments risked “stumbling zombie-like into a digital-welfare dystopia.”…(More)”.