Urban Analytics (Updated and Expanded)


As part of an ongoing effort to build a knowledge base for the field of opening governance by organizing and disseminating its learnings, the GovLab Selected Readings series provides an annotated and curated collection of recommended works on key opening governance topics. In this edition, we explore the literature on Urban Analytics. To suggest additional readings on this or any other topic, please email [email protected].

Data and its uses for Governance

Urban Analytics places better information in the hands of citizens as well as government officials to empower people to make more informed choices. Today, we are able to gather real-time information about traffic, pollution, noise, and environmental and safety conditions by culling data from a range of tools: from the low-cost sensors in mobile phones to more robust monitoring tools installed in our environment. With data collected and combined from the built, natural and human environments, we can develop more robust predictive models and use those models to make policy smarter.

With the computing power to transmit and store the data from these sensors, and the tools to translate raw data into meaningful visualizations, we can identify problems as they happen, design new strategies for city management, and target the application of scarce resources where they are most needed.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)
Amini, L., E. Bouillet, F. Calabrese, L. Gasparini, and O. Verscheure. “Challenges and Results in City-scale Sensing.” In IEEE Sensors, 59–61, 2011. http://bit.ly/1doodZm.

  • This paper examines “how city requirements map to research challenges in machine learning, optimization, control, visualization, and semantic analysis.”
  • The authors raises several research challenges including how to extract accurate information when the data is noisy and sparse; how to represent findings from digital pervasive technologies; and how people interact with one another and their environment.

Batty, M., K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz, G. Ouzounis, and Y. Portugali. “Smart Cities of the Future.The European Physical Journal Special Topics 214, no. 1 (November 1, 2012): 481–518. http://bit.ly/HefbjZ.

  • This paper explores the goals and research challenges involved in the development of smart cities that merge ICT with traditional infrastructures through digital technologies.
  • The authors put forth several research objectives, including: 1) to explore the notion of the city as a laboratory for innovation; 2) to develop technologies that ensure equity, fairness and realize a better quality of city life; and 3) to develop technologies that ensure informed participation and create shared knowledge for democratic city governance.
  • The paper also examines several contemporary smart city initiatives, expected paradigm shifts in the field, benefits, risks and impacts.

Budde, Paul. “Smart Cities of Tomorrow.” In Cities for Smart Environmental and Energy Futures, edited by Stamatina Th Rassia and Panos M. Pardalos, 9–20. Energy Systems. Springer Berlin Heidelberg, 2014. http://bit.ly/17MqPZW.

  • This paper examines the components and strategies involved in the creation of smart cities featuring “cohesive and open telecommunication and software architecture.”
  • In their study of smart cities, the authors examine smart and renewable energy; next-generation networks; smart buildings; smart transport; and smart government.
  • They conclude that for the development of smart cities, information and communication technology (ICT) is needed to build more horizontal collaborative structures, useful data must be analyzed in real time and people and/or machines must be able to make instant decisions related to social and urban life.

Cardone, G., L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, and R. Curtmola. “Fostering Participaction in Smart Cities: a Geo-social Crowdsensing Platform.” IEEE Communications
Magazine 51, no. 6 (2013): 112–119. http://bit.ly/17iJ0vZ.

  • This article examines “how and to what extent the power of collective although imprecise intelligence can be employed in smart cities.”
  • To tackle problems of managing the crowdsensing process, this article proposes a “crowdsensing platform with three main original technical aspects: an innovative geo-social model to profile users along different variables, such as time, location, social interaction, service usage, and human activities; a matching algorithm to autonomously choose people to involve in participActions and to quantify the performance of their sensing; and a new Android-based platform to collect sensing data from smart phones, automatically or with user help, and to deliver sensing/actuation tasks to users.”

Chen, Chien-Chu. “The Trend towards ‘Smart Cities.’” International Journal of Automation and Smart Technology. June 1, 2014. http://bit.ly/1jOOaAg.

  • In this study, Chen explores the ambitions, prevalence and outcomes of a variety of smart cities, organized into five categories:
    • Transportation-focused smart cities
    • Energy-focused smart cities
    • Building-focused smart cities
    • Water-resources-focused smart cities
    • Governance-focused smart cities
  • The study finds that the “Asia Pacific region accounts for the largest share of all smart city development plans worldwide, with 51% of the global total. Smart city development plans in the Asia Pacific region tend to be energy-focused smart city initiatives, aimed at easing the pressure on energy resources that will be caused by continuing rapid urbanization in the future.”
  • North America, on the other hand is generally more geared toward energy-focused smart city development plans. “In North America, there has been a major drive to introduce smart meters and smart electric power grids, integrating the electric power sector with information and communications technology (ICT) and replacing obsolete electric power infrastructure, so as to make cities’ electric power systems more reliable (which in turn can help to boost private-sector investment, stimulate the growth of the ‘green energy’ industry, and create more job opportunities).”
  • Looking to Taiwan as an example, Chen argues that, “Cities in different parts of the world face different problems and challenges when it comes to urban development, making it necessary to utilize technology applications from different fields to solve the unique problems that each individual city has to overcome; the emphasis here is on the development of customized solutions for smart city development.”

Domingo, A., B. Bellalta, M. Palacin, M. Oliver and E. Almirall. “Public Open Sensor Data: Revolutionizing Smart Cities.” Technology and Society Magazine, IEEE 32, No. 4. Winter 2013. http://bit.ly/1iH6ekU.

  • In this article, the authors explore the “enormous amount of information collected by sensor devices” that allows for “the automation of several real-time services to improve city management by using intelligent traffic-light patterns during rush hour, reducing water consumption in parks, or efficiently routing garbage collection trucks throughout the city.”
  • They argue that, “To achieve the goal of sharing and open data to the public, some technical expertise on the part of citizens will be required. A real environment – or platform – will be needed to achieve this goal.” They go on to introduce a variety of “technical challenges and considerations involved in building an Open Sensor Data platform,” including:
    • Scalability
    • Reliability
    • Low latency
    • Standardized formats
    • Standardized connectivity
  • The authors conclude that, despite incredible advancements in urban analytics and open sensing in recent years, “Today, we can only imagine the revolution in Open Data as an introduction to a real-time world mashup with temperature, humidity, CO2 emission, transport, tourism attractions, events, water and gas consumption, politics decisions, emergencies, etc., and all of this interacting with us to help improve the future decisions we make in our public and private lives.”

Harrison, C., B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, and P. Williams. “Foundations for Smarter Cities.” IBM Journal of Research and Development 54, no. 4 (2010): 1–16. http://bit.ly/1iha6CR.

  • This paper describes the information technology (IT) foundation and principles for Smarter Cities.
  • The authors introduce three foundational concepts of smarter cities: instrumented, interconnected and intelligent.
  • They also describe some of the major needs of contemporary cities, and concludes that Creating the Smarter City implies capturing and accelerating flows of information both vertically and horizontally.

Hernández-Muñoz, José M., Jesús Bernat Vercher, Luis Muñoz, José A. Galache, Mirko Presser, Luis A. Hernández Gómez, and Jan Pettersson. “Smart Cities at the Forefront of the Future Internet.” In The Future Internet, edited by John Domingue, Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Petros Daras, et al., 447–462. Lecture Notes in Computer Science 6656. Springer Berlin Heidelberg, 2011. http://bit.ly/HhNbMX.

  • This paper explores how the “Internet of Things (IoT) and Internet of Services (IoS), can become building blocks to progress towards a unified urban-scale ICT platform transforming a Smart City into an open innovation platform.”
  • The authors examine the SmartSantander project to argue that, “the different stakeholders involved in the smart city business is so big that many non-technical constraints must be considered (users, public administrations, vendors, etc.).”
  • The authors also discuss the need for infrastructures at the, for instance, European level for realistic large-scale experimentally-driven research.

Hoon-Lee, Jung, Marguerite Gong Hancock, Mei-Chih Hu. “Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco.” Technological Forecasting and Social Change. Ocotober 3, 2013. http://bit.ly/1rzID5v.

  • In this study, the authors aim to “shed light on the process of building an effective smart city by integrating various practical perspectives with a consideration of smart city characteristics taken from the literature.”
  • They propose a conceptual framework based on case studies from Seoul and San Francisco built around the following dimensions:
    • Urban openness
    • Service innovation
    • Partnerships formation
    • Urban proactiveness
    • Smart city infrastructure integration
    • Smart city governance
  • The authors conclude with a summary of research findings featuring “8 stylized facts”:
    • Movement towards more interactive services engaging citizens;
    • Open data movement facilitates open innovation;
    • Diversifying service development: exploit or explore?
    • How to accelerate adoption: top-down public driven vs. bottom-up market driven partnerships;
    • Advanced intelligent technology supports new value-added smart city services;
    • Smart city services combined with robust incentive systems empower engagement;
    • Multiple device & network accessibility can create network effects for smart city services;
    • Centralized leadership implementing a comprehensive strategy boosts smart initiatives.

Kamel Boulos, Maged N. and Najeeb M. Al-Shorbaji. “On the Internet of Things, smart cities and the WHO Healthy Cities.” International Journal of Health Geographics 13, No. 10. 2014. http://bit.ly/Tkt9GA.

  • In this article, the authors give a “brief overview of the Internet of Things (IoT) for cities, offering examples of IoT-powered 21st century smart cities, including the experience of the Spanish city of Barcelona in implementing its own IoT-driven services to improve the quality of life of its people through measures that promote an eco-friendly, sustainable environment.”
  • The authors argue that one of the central needs for harnessing the power of the IoT and urban analytics is for cities to “involve and engage its stakeholders from a very early stage (city officials at all levels, as well as citizens), and to secure their support by raising awareness and educating them about smart city technologies, the associated benefits, and the likely challenges that will need to be overcome (such as privacy issues).”
  • They conclude that, “The Internet of Things is rapidly gaining a central place as key enabler of the smarter cities of today and the future. Such cities also stand better chances of becoming healthier cities.”

Keller, Sallie Ann, Steven E. Koonin, and Stephanie Shipp. “Big Data and City Living – What Can It Do for Us?Significance 9, no. 4 (2012): 4–7. http://bit.ly/166W3NP.

  • This article provides a short introduction to Big Data, its importance, and the ways in which it is transforming cities. After an overview of the social benefits of big data in an urban context, the article examines its challenges, such as privacy concerns and institutional barriers.
  • The authors recommend that new approaches to making data available for research are needed that do not violate the privacy of entities included in the datasets. They believe that balancing privacy and accessibility issues will require new government regulations and incentives.

Kitchin, Rob. “The Real-Time City? Big Data and Smart Urbanism.” SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, July 3, 2013. http://bit.ly/1aamZj2.

  • This paper focuses on “how cities are being instrumented with digital devices and infrastructure that produce ‘big data’ which enable real-time analysis of city life, new modes of technocratic urban governance, and a re-imagining of cities.”
  • The authors provide “a number of projects that seek to produce a real-time analysis of the city and provides a critical reflection on the implications of big data and smart urbanism.”

Mostashari, A., F. Arnold, M. Maurer, and J. Wade. “Citizens as Sensors: The Cognitive City Paradigm.” In 2011 8th International Conference Expo on Emerging Technologies for a Smarter World (CEWIT), 1–5, 2011. http://bit.ly/1fYe9an.

  • This paper argues that. “implementing sensor networks are a necessary but not sufficient approach to improving urban living.”
  • The authors introduce the concept of the “Cognitive City” – a city that can not only operate more efficiently due to networked architecture, but can also learn to improve its service conditions, by planning, deciding and acting on perceived conditions.
  • Based on this conceptualization of a smart city as a cognitive city, the authors propose “an architectural process approach that allows city decision-makers and service providers to integrate cognition into urban processes.”

Oliver, M., M. Palacin, A. Domingo, and V. Valls. “Sensor Information Fueling Open Data.” In Computer Software and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual, 116–121, 2012. http://bit.ly/HjV4jS.

  • This paper introduces the concept of sensor networks as a key component in the smart cities framework, and shows how real-time data provided by different city network sensors enrich Open Data portals and require a new architecture to deal with massive amounts of continuously flowing information.
  • The authors’ main conclusion is that by providing a framework to build new applications and services using public static and dynamic data that promote innovation, a real-time open sensor network data platform can have several positive effects for citizens.

Perera, Charith, Arkady Zaslavsky, Peter Christen and Dimitrios Georgakopoulos. “Sensing as a service model for smart cities supported by Internet of Things.” Transactions on Emerging Telecommunications Technologies 25, Issue 1. January 2014. http://bit.ly/1qJLDP9.

  • This paper looks into the “enormous pressure towards efficient city management” that has “triggered various Smart City initiatives by both government and private sector businesses to invest in information and communication technologies to find sustainable solutions to the growing issues.”
  • The authors explore the parallel advancement of the Internet of Things (IoT), which “envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities.”
  • The paper proposes the sensing as a service model “as a solution based on IoT infrastructure.” The sensing as a service model consists of four conceptual layers: “(i) sensors and sensor owners; (ii) sensor publishers (SPs); (iii) extended service providers (ESPs); and (iv) sensor data consumers. They go on to describe how this model would work in the areas of waste management, smart agriculture and environmental management.

Privacy, Big Data, and the Public Good: Frameworks for Engagement. Edited by Julia Lane, Victoria Stodden, Stefan Bender, and Helen Nissenbaum; Cambridge University Press, 2014. http://bit.ly/UoGRca.

  • This book focuses on the legal, practical, and statistical approaches for maximizing the use of massive datasets while minimizing information risk.
  • “Big data” is more than a straightforward change in technology.  It poses deep challenges to our traditions of notice and consent as tools for managing privacy.  Because our new tools of data science can make it all but impossible to guarantee anonymity in the future, the authors question whether it possible to truly give informed consent, when we cannot, by definition, know what the risks are from revealing personal data either for individuals or for society as a whole.
  • Based on their experience building large data collections, authors discuss some of the best practical ways to provide access while protecting confidentiality.  What have we learned about effective engineered controls?  About effective access policies?  About designing data systems that reinforce – rather than counter – access policies?  They also explore the business, legal, and technical standards necessary for a new deal on data.
  • Since the data generating process or the data collection process is not necessarily well understood for big data streams, authors discuss what statistics can tell us about how to make greatest scientific use of this data. They also explore the shortcomings of current disclosure limitation approaches and whether we can quantify the extent of privacy loss.

Schaffers, Hans, Nicos Komninos, Marc Pallot, Brigitte Trousse, Michael Nilsson, and Alvaro Oliveira. “Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation.” In The Future Internet, edited by John Domingue, Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Petros Daras, et al., 431–446. Lecture Notes in Computer Science 6656. Springer Berlin Heidelberg, 2011. http://bit.ly/16ytKoT.

  • This paper “explores ‘smart cities’ as environments of open and user-driven innovation for experimenting and validating Future Internet-enabled services.”
  • The authors examine several smart city projects to illustrate the central role of users in defining smart services and the importance of participation. They argue that, “Two different layers of collaboration can be distinguished. The first layer is collaboration within the innovation process. The second layer concerns collaboration at the territorial level, driven by urban and regional development policies aiming at strengthening the urban innovation systems through creating effective conditions for sustainable innovation.”

Suciu, G., A. Vulpe, S. Halunga, O. Fratu, G. Todoran, and V. Suciu. “Smart Cities Built on Resilient Cloud Computing and Secure Internet of Things.” In 2013 19th International Conference on Control Systems and Computer Science (CSCS), 513–518, 2013. http://bit.ly/16wfNgv.

  • This paper proposes “a new platform for using cloud computing capacities for provision and support of ubiquitous connectivity and real-time applications and services for smart cities’ needs.”
  • The authors present a “framework for data procured from highly distributed, heterogeneous, decentralized, real and virtual devices (sensors, actuators, smart devices) that can be automatically managed, analyzed and controlled by distributed cloud-based services.”

Townsend, Anthony. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia. W. W. Norton & Company, 2013.

  • In this book, Townsend illustrates how “cities worldwide are deploying technology to address both the timeless challenges of government and the mounting problems posed by human settlements of previously unimaginable size and complexity.”
  • He also considers “the motivations, aspirations, and shortcomings” of the many stakeholders involved in the development of smart cities, and poses a new civics to guide these efforts.
  • He argues that smart cities are not made smart by various, soon-to-be-obsolete technologies built into its infrastructure, but how citizens use these ever-changing technologies to be “human-centered, inclusive and resilient.”

To stay current on recent writings and developments on Urban Analytics, please subscribe to the GovLab Digest.
Did we miss anything? Please submit reading recommendations to [email protected] or in the comments below.

Twiplomacy Study 2014


Twiplomacy: “World leaders vie for attention, connections and followers on Twitter, that’s the latest finding of Burson-Marsteller’s Twiplomacy study 2014, an annual global study looking at the use of Twitter by heads of state and government and ministers of foreign affairs.
While some heads of state and government continue to amass large followings, foreign ministers have established a virtual diplomatic network by following each other on the social media platform.
For many diplomats Twitter has becomes a powerful channel for digital diplomacy and 21st century statecraft and not all Twitter exchanges are diplomatic, real world differences are spilling over reflected on Twitter and sometimes end up in hashtag wars.
“I am a firm believer in the power of technology and social media to communicate with people across the world,” India’s new Prime Minister Narendra Modi wrote in his inaugural message on his new website. Within weeks of his election in May 2014, the @NarendraModi account has moved into the top four most followed Twitter accounts of world leaders with close to five million followers.
More than half of the world’s foreign ministers and their institutions are active on the social networking site. Twitter has become an indispensable diplomatic networking and communication tool. As Finnish Prime Minister @AlexStubb wrote in a tweet in March 2014: “Most people who criticize Twitter are often not on it. I love this place. Best source of info. Great way to stay tuned and communicate.”
As of 25 June 2014, the vast majority (83 percent) of the 193 UN member countries have a presence on Twitter. More than two-thirds (68 percent) of all heads of state and heads of government have personal accounts on the social network.
As of 24 June 2014, the vast majority (83 percent) of the 193 UN member countries have a presence on Twitter. More than two-thirds (68 percent) of all heads of state and heads of government have personal accounts on the social network.

Most Followed World Leaders

Since his election in late May 2014, India’s new Prime Minister @NarendraModi has skyrocketed into fourth place, surpassing the the @WhiteHouse on 25 June 2014 and dropping Turkey’s President Abdullah Gül (@cbabdullahgul) and Prime Minister Recep Tayyip Erdoğan (@RT_Erdogan) into sixth and seventh place with more than 4 million followers each.
Twiplomacy - Top 50 Most Followed
Modi still has a ways to go to best U.S. President @BarackObama, who tops the world-leader list with a colossal 43.7 million followers, with Pope Francis @Pontifex) with 14 million followers on his nine different language accounts and Indonesia’s President Susilo Bambang Yudhoyono @SBYudhoyono, who has more than five million followers and surpassed President Obama’s official administration account @WhiteHouse on 13 February 2014.
In Latin America Cristina Fernández de Kirchner, the President of Argentina @CFKArgentina is slightly ahead of Colombia’s President @JuanManSantos with 2,894,864 and 2,885,752 followers respectively. Mexico’s President Enrique Peña Nieto @EPN, Brazil’s Dilma Rousseff @dilmabr and Venezuela’s @NicolasMaduro complete the Latin American top five, with more than two million followers each.
Kenya’s Uhuru Kenyatta @UKenyatta is Africa’s most followed president with 457,307 followers, ahead of Rwanda’s @PaulKagame (407,515 followers) and South Africa’s Jacob Zuma (@SAPresident) (325,876 followers).
Turkey’s @Ahmet_Davutoglu is the most followed foreign minister with 1,511,772 followers, ahead of India’s @SushmaSwaraj (1,274,704 followers) and the Foreign Minister of the United Arab Emirates @ABZayed (1,201,364 followers)…”

We Need a Citizen Maker Movement


Lorelei Kelly at the Huffington Post: “It was hard to miss the giant mechanical giraffe grazing on the White House lawn last week. For the first time ever, the President organized a Maker Faire–inviting entrepreneurs and inventors from across the USA to celebrate American ingenuity in the service of economic progress.
The maker movement is a California original. Think R2D2 serving margaritas to a jester with an LED news scroll. The #nationofmakers Twitter feed has dozens of examples of collaborative production, of making, sharing and learning.
But since this was the White House, I still had to ask myself, what would the maker movement be if the economy was not the starting point? What if it was about civics? What if makers decided to create a modern, hands-on democracy?
What is democracy anyway but a never ending remix of new prototypes? Last week’s White House Maker Faire heralded a new economic bonanza. This revolution’s poster child is 3-D printing– decentralized fabrication that is customized to meet local needs. On the government front, new design rules for democracy are already happening in communities, where civics and technology have generated a front line of maker cities.
But the distance between California’s tech capacity and DC does seem 3000 miles wide. The NSA’s over collection/surveillance problem and Healthcare.gov’s doomed rollout are part of the same system-wide capacity deficit. How do we close the gap between California’s revolution and our institutions?

  • In California, disruption is a business plan. In DC, it’s a national security threat.
  • In California, hackers are artists. In DC, they are often viewed as criminals.
  • In California, “cyber” is a dystopian science fiction word. In DC, cyber security is in a dozen oversight plans for Congress.
  • in California, individuals are encouraged to “fail forward.” In DC, risk-aversion is bipartisan.

Scaling big problems with local solutions is a maker specialty. Government policymaking needs this kind of help.
Here’s the issue our nation is facing: The inability of the non-military side of our public institutions to process complex problems. Today, this competence and especially the capacity to solve technical challenges often exist only in the private sector. If something is urgent and can’t be monetized, it becomes a national security problem. Which increasingly means that critical decision making that should be in the civilian remit instead migrates to the military. Look at our foreign policy. Good government is a counter terrorism strategy in Afghanistan. Decades of civilian inaction on climate change means that now Miami is referred to as a battle space in policy conversations.
This rhetoric reflects an understandable but unacceptable disconnect for any democracy.
To make matters more confusing, much of the technology in civics (like list building petitions) is suited for elections, not for governing. It is often antagonistic. The result? policy making looks like campaigning. We need some civic tinkering to generate governing technology that comes with relationships. Specifically, this means technology that includes many voices, but has identifiable channels for expertise that can sort complexity and that is not compromised by financial self-interest.
Today, sorting and filtering information is a huge challenge for participation systems around the world. Information now ranks up there with money and people as a lever of power. On the people front, the loud and often destructive individuals are showing up effectively. On the money front, our public institutions are at risk of becoming purely pay to play (wonks call this “transactional”).
Makers, ask yourselves, how can we turn big data into a political constituency for using real evidence–one that can compete with all the negative noise and money in the system? For starters, technologists out West must stop treating government like it’s a bad signal that can be automated out of existence. We are at a moment where our society requires an engineering mindset to develop modern, tech-savvy rules for democracy. We need civic makers….”

Towards a comparative science of cities: using mobile traffic records in New York, London and Hong Kong


Book chapter by S. Grauwin, S. Sobolevsky, S. Moritz, I. Gódor, C. Ratti, to be published in “Computational Approaches for Urban Environments” (Springer Ed.), October 2014: “This chapter examines the possibility to analyze and compare human activities in an urban environment based on the detection of mobile phone usage patterns. Thanks to an unprecedented collection of counter data recording the number of calls, SMS, and data transfers resolved both in time and space, we confirm the connection between temporal activity profile and land usage in three global cities: New York, London and Hong Kong. By comparing whole cities typical patterns, we provide insights on how cultural, technological and economical factors shape human dynamics. At a more local scale, we use clustering analysis to identify locations with similar patterns within a city. Our research reveals a universal structure of cities, with core financial centers all sharing similar activity patterns and commercial or residential areas with more city-specific patterns. These findings hint that as the economy becomes more global, common patterns emerge in business areas of different cities across the globe, while the impact of local conditions still remains recognizable on the level of routine people activity.”

Index: The Networked Public


The Living Library Index – inspired by the Harper’s Index – provides important statistics and highlights global trends in governance innovation. This installment focuses on the networked public and was originally published in 2014.

Global Overview

  • The proportion of global population who use the Internet in 2013: 38.8%, up 3 percentage points from 2012
  • Increase in average global broadband speeds from 2012 to 2013: 17%
  • Percent of internet users surveyed globally that access the internet at least once a day in 2012: 96
  • Hours spent online in 2012 each month across the globe: 35 billion
  • Country with the highest online population, as a percent of total population in 2012: United Kingdom (85%)
  • Country with the lowest online population, as a percent of total population in 2012: India (8%)
  • Trend with the highest growth rate in 2012: Location-based services (27%)
  • Years to reach 50 million users: telephone (75), radio (38), TV (13), internet (4)

Growth Rates in 2014

  • Rate at which the total number of Internet users is growing: less than 10% a year
  • Worldwide annual smartphone growth: 20%
  • Tablet growth: 52%
  • Mobile phone growth: 81%
  • Percentage of all mobile users who are now smartphone users: 30%
  • Amount of all web usage in 2013 accounted for by mobile: 14%
  • Amount of all web usage in 2014 accounted for by mobile: 25%
  • Percentage of money spent on mobile used for app purchases: 68%
  • Growth of BitCoin wallet between 2013 and 2014: 8 times increase
  • Number of listings on AirBnB in 2014: 550k, 83% growth year on year
  • How many buyers are on Alibaba in 2014: 231MM buyers, 44% growth year on year

Social Media

  • Number of Whatsapp messages on average sent per day: 50 billion
  • Number sent per day on Snapchat: 1.2 billion
  • How many restaurants are registered on GrubHub in 2014: 29,000
  • Amount the sale of digital songs fell in 2013: 6%
  • How much song streaming grew in 2013: 32%
  • Number of photos uploaded and shared every day on Flickr, Snapchat, Instagram, Facebook and Whatsapp combined in 2014: 1.8 billion
  • How many online adults in the U.S. use a social networking site of some kind: 73%
  • Those who use multiple social networking sites: 42%
  • Dominant social networking platform: Facebook, with 71% of online adults
  • Number of Facebook users in 2004, its founding year: 1 million
  • Number of monthly active users on Facebook in September 2013: 1.19 billion, an 18% increase year-over-year
  • How many Facebook users log in to the site daily: 63%
  • Instagram users who log into the service daily: 57%
  • Twitter users who are daily visitors: 46%
  • Number of photos uploaded to Facebook every minute: over 243,000, up 16% from 2012
  • How much of the global internet population is actively using Twitter every month: 21%
  • Number of tweets per minute: 350,000, up 250% from 2012
  • Fastest growing demographic on Twitter: 55-64 year age bracket, up 79% from 2012
  • Fastest growing demographic on Facebook: 45-54 year age bracket, up 46% from 2012
  • How many LinkedIn accounts are created every minute: 120, up 20% from 2012
  • The number of Google searches in 2013: 3.5 million, up 75% from 2012
  • Percent of internet users surveyed globally that use social media in 2012: 90
  • Percent of internet users surveyed globally that use social media daily: 60
  • Time spent social networking, the most popular online activity: 22%, followed by searches (21%), reading content (20%), and emails/communication (19%)
  • The average age at which a child acquires an online presence through their parents in 10 mostly Western countries: six months
  • Number of children in those countries who have a digital footprint by age 2: 81%
  • How many new American marriages between 2005-2012 began by meeting online, according to a nationally representative study: more than one-third 
  • How many of the world’s 505 leaders are on Twitter: 3/4
  • Combined Twitter followers: of 505 world leaders: 106 million
  • Combined Twitter followers of Justin Bieber, Katy Perry, and Lady Gaga: 122 million
  • How many times all Wikipedias are viewed per month: nearly 22 billion times
  • How many hits per second: more than 8,000 
  • English Wikipedia’s share of total page views: 47%
  • Number of articles in the English Wikipedia in December 2013: over 4,395,320 
  • Platform that reaches more U.S. adults between ages 18-34 than any cable network: YouTube
  • Number of unique users who visit YouTube each month: more than 1 billion
  • How many hours of video are watched on YouTube each month: over 6 billion, 50% more than 2012
  • Proportion of YouTube traffic that comes from outside the U.S.: 80%
  • Most common activity online, based on an analysis of over 10 million web users: social media
  • People on Twitter who recommend products in their tweets: 53%
  • People who trust online recommendations from people they know: 90%

Mobile and the Internet of Things

  • Number of global smartphone users in 2013: 1.5 billion
  • Number of global mobile phone users in 2013: over 5 billion
  • Percent of U.S. adults that have a cell phone in 2013: 91
  • Number of which are a smartphone: almost two thirds
  • Mobile Facebook users in March 2013: 751 million, 54% increase since 2012
  • Growth rate of global mobile traffic as a percentage of global internet traffic as of May 2013: 15%, up from .9% in 2009
  • How many smartphone owners ages 18–44 “keep their phone with them for all but two hours of their waking day”: 79%
  • Those who reach for their smartphone immediately upon waking up: 62%
  • Those who couldn’t recall a time their phone wasn’t within reach or in the same room: 1 in 4
  • Facebook users who access the service via a mobile device: 73.44%
  • Those who are “mobile only”: 189 million
  • Amount of YouTube’s global watch time that is on mobile devices: almost 40%
  • Number of objects connected globally in the “internet of things” in 2012: 8.7 billion
  • Number of connected objects so far in 2013: over 10 billion
  • Years from tablet introduction for tables to surpass desktop PC and notebook shipments: less than 3 (over 55 million global units shipped in 2013, vs. 45 million notebooks and 35 million desktop PCs)
  • Number of wearable devices estimated to have been shipped worldwide in 2011: 14 million
  • Projected number of wearable devices in 2016: between 39-171 million
  • How much of the wearable technology market is in the healthcare and medical sector in 2012: 35.1%
  • How many devices in the wearable tech market are fitness or activity trackers: 61%
  • The value of the global wearable technology market in 2012: $750 million
  • The forecasted value of the market in 2018: $5.8 billion
  • How many Americans are aware of wearable tech devices in 2013: 52%
  • Devices that have the highest level of awareness: wearable fitness trackers,
  • Level of awareness for wearable fitness trackers amongst American consumers: 1 in 3 consumers
  • Value of digital fitness category in 2013: $330 million
  • How many American consumers surveyed are aware of smart glasses: 29%
  • Smart watch awareness amongst those surveyed: 36%

Access

  • How much of the developed world has mobile broadband subscriptions in 2013: 3/4
  • How much of the developing world has broadband subscription in 2013: 1/5
  • Percent of U.S. adults that had a laptop in 2012: 57
  • How many American adults did not use the internet at home, at work, or via mobile device in 2013: one in five
  • Amount President Obama initiated spending in 2009 in an effort to expand access: $7 billion
  • Number of Americans potentially shut off from jobs, government services, health care and education, among other opportunities due to digital inequality: 60 million
  • American adults with a high-speed broadband connection at home as of May 2013: 7 out of 10
  • Americans aged 18-29 vs. 65+ with a high-speed broadband connection at home as of May 2013: 80% vs. 43
  • American adults with college education (or more) vs. adults with no high school diploma that have a high-speed broadband connection at home as of May 2013: 89% vs. 37%
  • Percent of U.S. adults with college education (or more) that use the internet in 2011: 94
  • Those with no high school diploma that used the internet in 2011: 43
  • Percent of white American households that used the internet in 2013: 67
  • Black American households that used the internet in 2013: 57
  • States with lowest internet use rates in 2013: Mississippi, Alabama and Arkansas
  • How many American households have only wireless telephones as of the second half of 2012: nearly two in five
  • States with the highest prevalence of wireless-only adults according to predictive modeling estimates: Idaho (52.3%), Mississippi (49.4%), Arkansas (49%)
  • Those with the lowest prevalence of wireless-only adults: New Jersey (19.4%), Connecticut (20.6%), Delaware (23.3%) and New York (23.5%)

Sources

App pays commuters to take routes that ease congestion


Springwise: “Congestion at peak hours is a major problem in the world’s busiest city centres. We’ve recently seen Gothenburg in Sweden offering free bicycles to ease the burden on public transport services, but now a new app is looking to take a different approach to the same problem. Urban Engines uses algorithms to help cities determine key congestion choke points and times, and can then reward commuters for avoiding them.
The Urban Engines system is based on commuters using the smart commuter cards already found in many major cities. The company tracks journeys made with those commuter cards, and uses that data to identify main areas of congestion, and at what times the congestion occurs. The system has already been employed in Washington, D.C, and Sao Paulo, Brazil, helping provide valuable data for work with city planners.
It’s in Singapore, however, where the most interesting work has been achieved so far. There, commuters who have signed up and registered their commuter cards can earn rewards when they travel. They will earn one point for every kilometre travelled during peak hours, or triple that when travelling off-peak. The points earned can then be converted into discounts on future journeys, or put towards an in-app raffle game, where they have the opportunity to win sums of money. Urban Engines claim there’s been a 7 to 13 percent reduction in journeys made during peak hours, with 200,000 commuters taking part.
The company is based on an original experiment carried out in Bangalore. The rewards program there, carried out among 20,000 employees of the Indian company Infosys, lead to 17 percent of traffic shifting to off-peak travel times in six months. A similarly successful experiment has also been carried out on the Stanford University campus, and the plan is to now expand to other major cities…”

New Book on 25 Years of Participatory Budgeting


Tiago Peixoto at Democracy Spot: “A little while ago I mentioned the launch of the Portuguese version of the book organized by Nelson Dias, “Hope for Democracy: 25 Years of Participatory Budgeting Worldwide”.

The good news is that the English version is finally out. Here’s an excerpt from the introduction:

This book represents the effort  of more than forty authors and many other direct and indirect contributions that spread across different continents seek to provide an overview on the Participatory Budgeting (PB) in the World. They do so from different backgrounds. Some are researchers, others are consultants, and others are activists connected to several groups and social movements. The texts reflect this diversity of approaches and perspectives well, and we do not try to influence that.
(….)
The pages that follow are an invitation to a fascinating journey on the path of democratic innovation in very diverse cultural, political, social and administrative settings. From North America to Asia, Oceania to Europe, from Latin America to Africa, the reader will find many reasons to closely follow the proposals of the different authors.

The book can be downloaded here [PDF]. I had the pleasure of being one of the book’s contributors, co-authoring an article with Rafael Sampaio on the use of ICT in PB processes: “Electronic Participatory Budgeting: False Dilemmas and True Complexities” [PDF]...”

The Emerging Science of Computational Anthropology


Emerging Technology From the arXiv: The increasing availability of big data from mobile phones and location-based apps has triggered a revolution in the understanding of human mobility patterns. This data shows the ebb and flow of the daily commute in and out of cities, the pattern of travel around the world and even how disease can spread through cities via their transport systems.
So there is considerable interest in looking more closely at human mobility patterns to see just how well it can be predicted and how these predictions might be used in everything from disease control and city planning to traffic forecasting and location-based advertising.
Today we get an insight into the kind of detailed that is possible thanks to the work of Zimo Yang at Microsoft research in Beijing and a few pals. These guys start with the hypothesis that people who live in a city have a pattern of mobility that is significantly different from those who are merely visiting. By dividing travelers into locals and non-locals, their ability to predict where people are likely to visit dramatically improves.
Zimo and co begin with data from a Chinese location-based social network called Jiepang.com. This is similar to Foursquare in the US. It allows users to record the places they visit and to connect with friends at these locations and to find others with similar interests.
The data points are known as check-ins and the team downloaded more than 1.3 million of them from five big cities in China: Beijing, Shanghai, Nanjing, Chengdu and Hong Kong. They then used 90 per cent of the data to train their algorithms and the remaining 10 per cent to test it. The Jiapang data includes the users’ hometowns so it’s easy to see whether an individual is checking in in their own city or somewhere else.
The question that Zimo and co want to answer is the following: given a particular user and their current location, where are they most likely to visit in the near future? In practice, that means analysing the user’s data, such as their hometown and the locations recently visited, and coming up with a list of other locations that they are likely to visit based on the type of people who visited these locations in the past.
Zimo and co used their training dataset to learn the mobility pattern of locals and non-locals and the popularity of the locations they visited. The team then applied this to the test dataset to see whether their algorithm was able to predict where locals and non-locals were likely to visit.
They found that their best results came from analysing the pattern of behaviour of a particular individual and estimating the extent to which this person behaves like a local. That produced a weighting called the indigenization coefficient that the researchers could then use to determine the mobility patterns this person was likely to follow in future.
In fact, Zimo and co say they can spot non-locals in this way without even knowing their home location. “Because non-natives tend to visit popular locations, like the Imperial Palace in Beijing and the Bund in Shanghai, while natives usually check in around their homes and workplaces,” they add.
The team say this approach considerably outperforms the mixed algorithms that use only individual visiting history and location popularity. “To our surprise, a hybrid algorithm weighted by the indigenization coefficients outperforms the mixed algorithm accounting for additional demographical information.”
It’s easy to imagine how such an algorithm might be useful for businesses who want to target certain types of travelers or local people. But there is a more interesting application too.
Zimo and co say that it is possible to monitor the way an individual’s mobility patterns change over time. So if a person moves to a new city, it should be possible to see how long it takes them to settle in.
One way of measuring this is in their mobility patterns: whether they are more like those of a local or a non-local. “We may be able to estimate whether a non-native person will behave like a native person after a time period and if so, how long in average a person takes to become a native-like one,” say Zimo and co.
That could have a fascinating impact on the way anthropologists study migration and the way immigrants become part of a local community. This is computational anthropology a science that is clearly in its early stages but one that has huge potential for the future.”
Ref: arxiv.org/abs/1405.7769 : Indigenization of Urban Mobility

Humanitarians in the sky


Patrick Meier in the Guardian: “Unmanned aerial vehicles (UAVs) capture images faster, cheaper, and at a far higher resolution than satellite imagery. And as John DeRiggi speculates in “Drones for Development?” these attributes will likely lead to a host of applications in development work. In the humanitarian field that future is already upon us — so we need to take a rights-based approach to advance the discussion, improve coordination of UAV flights, and to promote regulation that will ensure safety while supporting innovation.
It was the unprecedentedly widespread use of civilian UAVs following typhoon Haiyan in the Philippines that opened my eyes to UAV use in post-disaster settings. I was in Manila to support the United Nations’ digital humanitarian efforts and came across new UAV projects every other day.
One team was flying rotary-wing UAVs to search for survivors among vast fields of debris that were otherwise inaccessible. Another flew fixed-wing UAVs around Tacloban to assess damage and produce high-quality digital maps. Months later, UAVs are still being used to support recovery and preparedness efforts. One group is working with local mayors to identify which communities are being overlooked in the reconstruction.
Humanitarian UAVs are hardly new. As far back as 2007, the World Food Program teamed up with the University of Torino to build humanitarian UAVs. But today UAVs are much cheaper, safer, and easier to fly. This means more people own personal UAVs. The distinguishing feature between these small UAVs and traditional remote control airplanes or helicopters is that they are intelligent. Most can be programmed to fly and land autonomously at designated locations. Newer UAVs also have on-board, flight-stabilization features that automatically adapt to changing winds, automated collision avoidance systems, and standard fail-safe mechanisms.
While I was surprised by the surge in UAV projects in the Philippines, I was troubled that none of these teams were aware of each other and that most were apparently not sharing their imagery with local communities. What happens when even more UAV teams show up following future disasters? Will they be accompanied by droves of drone journalists and “disaster tourists” equipped with personal UAVs? Will we see thousands of aerial disaster pictures and videos uploaded to social media rather than in the hands of local communities? What are the privacy implications? And what about empowering local communities to deploy their own UAVs?
There were many questions but few answers. So I launched the humanitarian UAV network (UAViators) to bridge the worlds of humanitarian professionals and UAV experts to address these questions. Our first priority was to draft a code of conduct for the use of UAVs in humanitarian settings to hold ourselves accountable while educating new UAV pilots before serious mistakes are made…”

Making cities smarter through citizen engagement


Vaidehi Shah at Eco-Business: “Rapidly progressing information communications technology (ICT) is giving rise to an almost infinite range of innovations that can be implemented in cities to make them more efficient and better connected. However, in order for technology to yield sustainable solutions, planners must prioritise citizen engagement and strong leadership.
This was the consensus on Tuesday at the World Cities Summit 2014, where representatives from city and national governments, technology firms and private sector organisations gathered in Singapore to discuss strategies and challenges to achieving sustainable cities in the future.
Laura Ipsen, Microsoft corporate vice president for worldwide public sector, identified globalisation, social media, big data, and mobility as the four major technological trends prevailing in cities today, as she spoke at the plenary session with a theme on “The next urban decade: critical challenges and opportunities”.
Despite these increasing trends, she cautioned, “technology does not build infrastructure, but it does help better engage citizens and businesses through public-private partnerships”.
For example, “LoveCleanStreets”, an online tool developed by Microsoft and partners, enables London residents to report infrastructure problems such as damaged roads or signs, shared Ipsen.
“By engaging citizens through this application, cities can fix problems early, before they get worse,” she said.
In Singapore, the ‘MyWaters’ app of PUB, Singapore’s national water agency, is also a key tool for the government to keep citizens up-to-date of water quality and safety issues in the country, she added.
Even if governments did not actively develop solutions themselves, simply making the immense amounts of data collected by the city open to businesses and citizens could make a big difference to urban liveability, Mark Chandler, director of the San Francisco Mayor’s Office of International Trade and Commerce, pointed out.
Opening up all of the data collected by San Francisco, for instance, yielded 60 free mobile applications that allow residents to access urban solutions related to public transport, parking, and electricity, among others, he explained. This easy and convenient access to infrastructure and amenities, which are a daily necessity, is integral to “a quality of life that keeps the talented workforce in the city,” Chandler said….”