Technical Tiers: A New Classification Framework for Global AI Workforce Analysis


Report by Siddhi Pal, Catherine Schneider and Ruggero Marino Lazzaroni: “… introduces a novel three-tiered classification system for global AI talent that addresses significant methodological limitations in existing workforce analyses, by distinguishing between different skill categories within the existing AI talent pool. By distinguishing between non-technical roles (Category 0), technical software development (Category 1), and advanced deep learning specialization (Category 2), our framework enables precise examination of AI workforce dynamics at a pivotal moment in global AI policy.

Through our analysis of a sample of 1.6 million individuals in the AI talent pool across 31 countries, we’ve uncovered clear patterns in technical talent distribution that significantly impact Europe’s AI ambitions. Asian nations hold an advantage in specialized AI expertise, with South Korea (27%), Israel (23%), and Japan (20%) maintaining the highest proportions of Category 2 talent. Within Europe, Poland and Germany stand out as leaders in specialized AI talent. This may be connected to their initiatives to attract tech companies and investments in elite research institutions, though further research is needed to confirm these relationships.

Our data also reveals a shifting landscape of global talent flows. Research shows that countries employing points-based immigration systems attract 1.5 times more high-skilled migrants than those using demand-led approaches. This finding takes on new significance in light of recent geopolitical developments affecting scientific research globally. As restrictive policies and funding cuts create uncertainty for researchers in the United States, one of the big destinations for European AI talent, the way nations position their regulatory environments, scientific freedoms, and research infrastructure will increasingly determine their ability to attract and retain specialized AI talent.

The gender analysis in our study illuminates another dimension of competitive advantage. Contrary to the overall AI talent pool, EU countries lead in female representation in highly technical roles (Category 2), occupying seven of the top ten global rankings. Finland, Czechia, and Italy have the highest proportion of female representation in Category 2 roles globally (39%, 31%, and 28%, respectively). This gender diversity represents not merely a social achievement but a potential strategic asset in AI innovation, particularly as global coalitions increasingly emphasize the importance of diverse perspectives in AI development…(More)”

Mind the (Language) Gap: Mapping the Challenges of LLM Development in Low-Resource Language Contexts


White Paper by the Stanford Institute for Human-Centered AI (HAI), the Asia Foundation and the University of Pretoria: “…maps the LLM development landscape for low-resource languages, highlighting challenges, trade-offs, and strategies to increase investment; prioritize cross-disciplinary, community-driven development; and ensure fair data ownership…

  • Large language model (LLM) development suffers from a digital divide: Most major LLMs underperform for non-English—and especially low-resource—languages; are not attuned to relevant cultural contexts; and are not accessible in parts of the Global South.
  • Low-resource languages (such as Swahili or Burmese) face two crucial limitations: a scarcity of labeled and unlabeled language data and poor quality data that is not sufficiently representative of the languages and their sociocultural contexts.
  • To bridge these gaps, researchers and developers are exploring different technical approaches to developing LLMs that better perform for and represent low-resource languages but come with different trade-offs:
    • Massively multilingual models, developed primarily by large U.S.-based firms, aim to improve performance for more languages by including a wider range of (100-plus) languages in their training datasets.
    • Regional multilingual models, developed by academics, governments, and nonprofits in the Global South, use smaller training datasets made up of 10-20 low-resource languages to better cater to and represent a smaller group of languages and cultures.
    • Monolingual or monocultural models, developed by a variety of public and private actors, are trained on or fine-tuned for a single low-resource language and thus tailored to perform well for that language…(More)”

Designing New Institutions and Renewing Existing Ones – A Playbook


UNDP Report: “The world has long depended on public institutions to solve problems and meet needs — from running schools to building roads, taking care of public health to defense. Today, global challenges like climate change, election security, forced migration, and AI-induced unemployment demand new institutional responses, especially in the Global South.

The bad news? Many institutions now struggle with public distrust, being seen as too wasteful
and inefficient, unresponsive and ineffective, and sometimes corrupt and outdated.
The good news? Fresh methods and models inspired by innovations in government, business, and civil
society are now available that can help us rethink institutions — making them more public results
oriented, agile, transparent, and fit for purpose. And ready for the future…(More)”.

Global population data is in crisis – here’s why that matters


Article by Andrew J Tatem and Jessica Espey: “Every day, decisions that affect our lives depend on knowing how many people live where. For example, how many vaccines are needed in a community, where polling stations should be placed for elections or who might be in danger as a hurricane approaches. The answers rely on population data.

But counting people is getting harder.

For centuries, census and household surveys have been the backbone of population knowledge. But we’ve just returned from the UN’s statistical commission meetings in New York, where experts reported that something alarming is happening to population data systems globally.

Census response rates are declining in many countries, resulting in large margins of error. The 2020 US census undercounted America’s Latino population by more than three times the rate of the 2010 census. In Paraguay, the latest census revealed a population one-fifth smaller than previously thought.

South Africa’s 2022 census post-enumeration survey revealed a likely undercount of more than 30%. According to the UN Economic Commission for Africa, undercounts and census delays due to COVID-19, conflict or financial limitations have resulted in an estimated one in three Africans not being counted in the 2020 census round.

When people vanish from data, they vanish from policy. When certain groups are systematically undercounted – often minorities, rural communities or poorer people – they become invisible to policymakers. This translates directly into political underrepresentation and inadequate resource allocation…(More)”.

From Insights to Action: Amplifying Positive Deviance within Somali Rangelands


Article by Basma Albanna, Andreas Pawelke and Hodan Abdullahi: “In every community, some individuals or groups achieve significantly better outcomes than their peers, despite having similar challenges and resources. Finding these so-called positive deviants and working with them to diffuse their practices is referred to as the Positive Deviance approach. The Data-Powered Positive Deviance (DPPD) method follows the same logic as the Positive Deviance approach but leverages existing, non-traditional data sources, in conjunction with traditional data sources to identify and scale the solutions of positive deviants. The UNDP Somalia Accelerator Lab was part of the first cohort of teams that piloted the application of DPPD trying to tackle the rangeland health problem in the West Golis region. In this blog post we’re reflecting on the process we designed and tested to go from the identification and validation of successful practices to helping other communities adopt them.

Uncovering Rangeland Success

Three years ago we embarked on a journey to identify pastoral communities in Somaliland that demonstrated resilience in the face of adversity. Using a mix of traditional and non-traditional data sources, we wanted to explore and learn from communities that managed to have healthy rangelands despite the severe droughts of 2016 and 2017.

We engaged with government officials from various ministries, experts from the University of Hargeisa, international organizations like the FAO and members of agro-pastoral communities to learn more about rangeland health. We then selected the West Golis as our region of interest with a majority pastoral community and relative ease of access. Employing the Soil-Adjusted Vegetation Index (SAVI) and using geospatial and earth observation data allowed us to identify an initial group of potential positive deviants illustrated as green circles in Figure 1 below.

From Insights to Action: Amplifying Positive Deviance within Somali Rangelands
Figure 1: Measuring the vegetation health within 5 km community buffer zones based on SAVI.

Following the identification of potential positive deviants, we engaged with 18 pastoral communities from the Togdheer, Awdal, and Maroodijeex regions to validate whether the positive deviants we found using earth observation data were indeed doing better than the other communities.

The primary objective of the fieldwork was to uncover the existing practices and strategies that could explain the outperformance of positively-deviant communities compared to other communities. The research team identified a range of strategies, including soil and water conservation techniques, locally-produced pesticides, and reseeding practices as summarized in Figure 2.

From Insights to Action
Figure 2: Strategies and practices that emerged from the fieldwork

Data-Powered Positive Deviance is not just about identifying outperformers and their successful practices. The real value lies in the diffusion, adoption and adaptation of these practices by individuals, groups or communities facing similar challenges. For this to succeed, both the positive deviants and those learning about their practices must take ownership and drive the process. Merely presenting the uncommon but successful practices of positive deviants to others will not work. The secret to success is in empowering the community to take charge, overcome challenges, and leverage their own resources and capabilities to effect change…(More)”.

Lexota


Press Release: “Today, Global Partners Digital (GPD), the Centre for Human Rights at the University of Pretoria (CHR), Article 19 West Africa, the Collaboration on International ICT Policy in East and Southern Africa (CIPESA) and PROTEGE QV jointly launch LEXOTA—Laws on Expression Online: Tracker and Analysis, a new interactive tool to help human rights defenders track and analyse government responses to online disinformation across Sub-Saharan Africa. 

Expanding on work started in 2020, LEXOTA offers a comprehensive overview of laws, policies and other government actions on disinformation in every country in Sub-Saharan Africa. The tool is powered by multilingual data and context-sensitive insight from civil society organisations and uses a detailed framework to assess whether government responses to disinformation are human rights-respecting. A dynamic comparison feature empowers users to examine the regulatory approaches of different countries and to compare how different policy responses measure up against human rights standards, providing them with insights into trends across the region as well as the option to examine country-specific analyses. 

In recent years, governments in Sub-Saharan Africa have increasingly responded to disinformation through content-based restrictions and regulations, which often pose significant risks to individuals’ right to freedom of expression. LEXOTA was developed to support those working to defend internet freedom and freedom of expression across the region, by making data on these government actions accessible and comparable…(More)”.

Why the Global South should nationalise its data


Ulises Ali Mejias at AlJazeera: “The recent coup in Bolivia reminds us that poor countries rich in resources continue to be plagued by the legacy of colonialism. Anything that stands in the way of a foreign corporation’s ability to extract cheap resources must be removed.

Today, apart from minerals and fossil fuels, corporations are after another precious resource: Personal data. As with natural resources, data too has become the target of extractive corporate practices.

As sociologist Nick Couldry and I argue in our book, The Costs of Connection: How Data is Colonizing Human Life and Appropriating It for Capitalism, there is a new form of colonialism emerging in the world: data colonialism. By this, we mean a new resource-grab whereby human life itself has become a direct input into economic production in the form of extracted data.

We acknowledge that this term is controversial, given the extreme physical violence and structures of racism that historical colonialism employed. However, our point is not to say that data colonialism is the same as historical colonialism, but rather to suggest that it shares the same core function: extraction, exploitation, and dispossession.

Like classical colonialism, data colonialism violently reconfigures human relations to economic production. Things like land, water, and other natural resources were valued by native people in the precolonial era, but not in the same way that colonisers (and later, capitalists) came to value them: as private property. Likewise, we are experiencing a situation in which things that were once primarily outside the economic realm – things like our most intimate social interactions with friends and family, or our medical records – have now been commodified and made part of an economic cycle of data extraction that benefits a few corporations.

So what could countries in the Global South do to avoid the dangers of data colonialism?…(More)”.

Data Protection in the Humanitarian Sector – A Blockchain Approach


Report by Andrej Verity and Irene Solaiman: “Data collection and storage are becoming increasingly digital. In the humanitarian sector, data motivates action, informing organizations who then determine priorities and resource allocation in crises.

“Humanitarians are dependent on technology and on the Internet. When life-saving aid isn’t delivered on time and to the right beneficiaries, people can die.” -Brookings

In the age of information and cyber warfare, humanitarian organizations must take measures to protect civilians, especially those in critical and vulnerable positions.

“Data privacy and ensuring protection from harm, including the provision of data security, are therefore fundamentally linked—and neither can be realized without the other.” -The Signal Code

Information in the wrong hands can risk lives or even force aid organizations to shut down. For example, in 2009, Sudan expelled over a dozen international nongovernmental organizations (NGOs) that were deemed key to maintaining a lifeline to 4.7 million people in western Darfur. The expulsion occurred after the Sudanese Government collected Internet-accessible information that made leadership fear international criminal charges. Responsible data protection is a crucial component of cybersecurity. As technology develops, so do threats and data vulnerabilities. Emerging technologies such as blockchain provide further security to sensitive information and overall data storage. Still, with new technologies come considerations for implementation…(More)”.

What are hidden data treasuries and how can they help development outcomes?


Blogpost by Damien Jacques et al: “Cashew nuts in Burkina Faso can be seen growing from space. Such is the power of satellite technology, it’s now possible to observe the changing colors of fields as crops slowly ripen.

This matters because it can be used as an early warning of crop failure and food crisis – giving governments and aid agencies more time to organize a response.

Our team built an exhaustive crop type and yield estimation map in Burkina Faso, using artificial intelligence and satellite images from the European Space Agency. 

But building the map would not have been possible without a data set that GIZ, the German government’s international development agency, had collected for one purpose on the ground some years before – and never looked at again.

At Dalberg, we call this a “hidden data treasury” and it has huge potential to be used for good. 

Unlocking data potential

In the records of the GIZ Data Lab, the GPS coordinates and crop yield measurements of just a few hundred cashew fields were sitting dormant.

They’d been collected in 2015 to assess the impact of a program to train farmers. But through the power of machine learning, that data set has been given a new purpose.

Using Dalberg Data Insights’ AIDA platform, our team trained algorithms to analyze satellite images for cashew crops, track the crops’ color as they ripen, and from there, estimate yields for the area covered by the data.

From this, it’s now possible to predict crop failures for thousands of fields.

We believe this “recycling” of old data, when paired with artificial intelligence, can help to bridge the data gaps in low-income countries and meet the UN’s Sustainable Development Goals….(More)”.

How randomised trials became big in development economics


Seán Mfundza Muller, Grieve Chelwa, and Nimi Hoffmann at the Conversation: “…One view of the challenge of development is that it is fundamentally about answering causal questions. If a country adopts a particular policy, will that cause an increase in economic growth, a reduction in poverty or some other improvement in the well-being of citizens?

In recent decades economists have been concerned about the reliability of previously used methods for identifying causal relationships. In addition to those methodological concerns, some have argued that “grand theories of development” are either incorrect or at least have failed to yield meaningful improvements in many developing countries.

Two notable examples are the idea that developing countries may be caught in a poverty trap that requires a “big push” to escape and the view that institutions are key for growth and development.

These concerns about methods and policies provided a fertile ground for randomised experiments in development economics. The surge of interest in experimental approaches in economics began in the early 1990s. Researchers began to use “natural experiments”, where for example random variation was part of a policy rather than decided by a researcher, to look at causation.

But it really gathered momentum in the 2000s, with researchers such as the Nobel awardees designing and implementing experiments to study a wide range of microeconomic questions.

Randomised trials

Proponents of these methods argued that a focus on “small” problems was more likely to succeed. They also argued that randomised experiments would bring credibility to economic analysis by providing a simple solution to causal questions.

These experiments randomly allocate a treatment to some members of a group and compare the outcomes against the other members who did not receive treatment. For example, to test whether providing credit helps to grow small firms or increase their likelihood of success, a researcher might partner with a financial institution and randomly allocate credit to applicants that meet certain basic requirements. Then a year later the researcher would compare changes in sales or employment in small firms that received the credit to those that did not.

Randomised trials are not a new research method. They are best known for their use in testing new medicines. The first medical experiment to use controlled randomisation occurred in the aftermath of the second world war. The British government used it to assess the effectiveness of a drug for tuberculosis treatment.

In the early 20th century and mid-20th century American researchers had used experiments like this to examine the effects of various social policies. Examples included income protection and social housing.

The introduction of these methods into development economics also followed an increase in their use in other areas of economics. One example was the study of labour markets.

Randomised control trials in economics are now mostly used to evaluate the impact of social policy interventions in poor and middle-income countries. Work by the 2019 Nobel awardees – Michael Kremer, Abhijit Banerjee and Esther Duflo – includes experiments in Kenya and India on teacher attendancetextbook provisionmonitoring of nurse attendance and the provision of microcredit.

The popularity, among academics and policymakers, of the approach is not only due to its seeming ability to solve methodological and policy concerns. It is also due to very deliberate, well-funded advocacy by its proponents….(More)”.