International Development Doesn’t Care About Patient Privacy


Yogesh Rajkotia at the Stanford Social Innovation Review: “In 2013, in southern Mozambique, foreign NGO workers searched for a man whom the local health facility reported as diagnosed with HIV. The workers aimed to verify that the health facility did indeed diagnose and treat him. When they could not find him, they asked the village chief for help. Together with an ever-growing crowd of onlookers, the chief led them to the man’s home. After hesitating and denying, he eventually admitted, in front of the crowd, that he had tested positive and received treatment. With his status made public, he now risked facing stigma, discrimination, and social marginalization. The incident undermined both his health and his ability to live a dignified life.

Similar privacy violations were documented in Burkina Faso in 2016, where community workers asked partners, in the presence of each other, to disclose what individual health services they had obtained.

Why was there such a disregard for the privacy and dignity of these citizens?

As it turns out, unbeknownst to these Mozambican and Burkinabé patients, their local health centers were participating in performance-based financing (PBF) programs financed by foreign assistance agencies. Implemented in more than 35 countries, PBF programs offer health workers financial bonuses for delivering priority health interventions. To ensure that providers do not cheat the system, PBF programs often send verifiers to visit patients’ homes to confirm that they have received specific health services. These verifiers are frequently community members (the World Bank callously notes in its “Performance-Based Financing Toolkit” that even “a local soccer club” can play this role), and this practice, known as “patient tracing,” is common among PBF programs. In World Bank-funded PBF programs alone, 19 out of the 25 PBF programs implement patient tracing. Yet the World Bank’s toolkit never mentions patient privacy or confidentiality. In patient tracing, patients’ rights and dignity are secondary to donor objectives.

Patient tracing within PBF programs is just one example of a bigger problem: Privacy violations are pervasive in global health. Some researchers and policymakers have raised privacy concerns about tuberculosis (TB), human immunodeficiency virus (HIV), family planningpost-abortion care, and disease surveillance programsA study conducted by the Asia-Pacific Network of People Living with HIV/AIDS found that 34 percent of people living with HIV in India, Indonesia, Philippines, and Thailand reported that health workers breached confidentiality. In many programs, sensitive information about people’s sexual and reproductive health, disease status, and other intimate health details are often collected to improve health system effectiveness and efficiency. Usually, households have no way to opt out, nor any control over how heath care programs use, store, and disseminate this data. At the same time, most programs do not have systems to enforce health workers’ non-disclosure of private information.

In societies with strong stigma around certain health topics—especially sexual and reproductive health—the disclosure of confidential patient information can destroy lives. In contexts where HIV is highly stigmatized, people living with HIV are 2.4 times more likely to delay seeking care until they are seriously ill. In addition to stigma’s harmful effects on people’s health, it can limit individuals’ economic opportunities, cause them to be socially marginalized, and erode their psychological wellbeing….(More)”.

The Metric God That Failed


Jerry Muller in PS Long Reads: “Over the past few decades, formal institutions have increasingly been subjected to performance measurements that define success or failure according to narrow and arbitrary metrics. The outcome should have been predictable: institutions have done what they can to boost their performance metrics, often at the expense of performance itself.

…In 1986, the American management guru Tom Peters popularized the organizational theorist Mason Haire’s dictum that, “What gets measured gets done,” and with it a credo of measured performance that I call “metric fixation.” In time, the devotees of measured performance would arrive at a naive article of faith that is nonetheless appealing for its mix of optimism and scientism: “Anything that can be measured can be improved.”

In the intervening decades, this faith-based conceit has developed into a dogma about the relationship between measurement and performance. Evangelists of “disruption” and “best practices” have carried the new gospel to ever more distant shores. If you work in health care, education, policing, or the civil service, you have probably been subjected to the policies and practices wrought by metric-centrism.

There are three tenets to the metrical canon. The first holds that it is both possible and desirable to replace judgment – acquired through personal experience and talent – with numerical indicators of comparative performance based on standardized data. Second, making such metrics public and transparent ensures that institutions are held accountable. And, third, the best way to motivate people within organizations is to attach monetary or reputational rewards and penalties to their measured performance….(More)”.

Technology Landscape for Digital Identification


World Bank Report: “Robust, inclusive, and responsible identification systems can increase access to finance, healthcare, education, and other critical services and benefits. Identification systems are also key to improving efficiency and enabling innovation for public- and private-sector services, such as greater efficiency in the delivery of social safety nets and facilitating the development of digital economies. However, the World Bank estimates that more than 1.1 billion individuals do not have official proof of their identity.10 New technologies provide countries with the opportunity to leapfrog paper-based systems and rapidly establish a robust identification infrastructure. As a result, the countries are increasingly adopting nationwide digital identification (ID) programs and leveraging them in other sectors.

Whether a country is enhancing existing ID systems or implementing new systems from the ground up, technology choices are critical to the success of digital identification systems. A number of new technologies are emerging to enable various aspects of ID lifecycle. For some of these technologies, no large-scale studies have been done; for others, current speculation makes objective evaluations difficult.

This report is a first attempt to develop a comprehensive overview of the current technology landscape for digital identification. It is intended to serve as a framework for understanding the myriad options and considerations of technology in this rapidly advancing agenda and in no way is intended to provide advice on specific technologies, particularly given there are a number of other considerations and country contexts which need to be considered. This report also does not advocate the use of a certain technology from a particular vendor for any particular application.

While some technologies are relatively easy to use and affordable, others are costly or so complex that using them on a large scale presents daunting challenges. This report provides practitioners with an overview of various technologies and advancements that are especially relevant for digital identification systems. It highlights key benefits and challenges associated with each technology. It also provides a framework for assessing each technology on multiple criteria, including length of time it has been in use, its ease of integration with legacy and future systems, and its interoperability with other technologies. The practitioners and stakeholders who read this are reminded to bear in mind that the technologies associated with ID systems are rapidly evolving, and that this report, prepared in early 2018, is a snapshot in time. Therefore, technology limitations and challenges highlighted in this report today may not be applicable in the years to come….(More)”

Issuing Bonds to Invest in People


Tina Rosenberg at the New York Times: “The first social impact bond began in 2010 in Peterborough, England. Investors funded a program aimed at keeping newly released short-term inmates out of prison. It reduced reoffending by 9 percent compared to a control group, exceeding its target. So investors got their money back, plus interest.

Seldom has a policy idea gone viral so fast. There are now 108 such bonds, in 24 countries. The United States has 20, leveraging $211 million in investment capital, and at least 50 more are on the way. These bonds fund programs to reduce Oklahoma’s population of women in prison, help low-income mothers to have healthy pregnancies in South Carolina, teach refugees and immigrants English and job skills in Boston, house the homeless in Denver, and reduce storm water runoff in the District of Columbia. There’s a Forest Resilience Bond underway that seeks to finance desperately needed wildfire prevention.

Here’s how social impact bonds differ from standard social programs:

They raise upfront money to do prevention. Everyone knows most prevention is a great investment. But politicians don’t do “think ahead” very well. They hate to spend money now to create savings their successors will reap. Issuing a social impact bond means they don’t have to.

They concentrate resources on what works. Bonds build market discipline, since investors demand evidence of success.

They focus attention on outcomes rather than outputs. “Take work-force training,” said David Wilkinson, commissioner of Connecticut’s Office of Early Childhood. “We tend to pay for how many people receive training. We’re less likely to pay for — or even look at — how many people get good jobs.” Providers, he said, were best recognized for their work “when we reward them for outcomes they want to see and families they are serving want to achieve.”

They improve incentives.Focusing on outcomes changes the way social service providers think. In Connecticut, said Duryea, they now have a financial incentive to keep children out of foster care, rather than bring more in.

They force decision makers to look at data. Programs start with great fanfare, but often nobody then examines how they are doing. But with a bond, evaluation is essential.

They build in flexibility.“It’s a big advantage that they don’t prescribe what needs to be done,” said Cohen. The people on the ground choose the strategy, and can change it if necessary. “Innovators can think outside the box and tackle health or education in revolutionary ways,” he said.

…In the United States, social impact bonds have become synonymous with “pay for success” programs. But there are other ways to pay for success. For example, Wilkinson, the Connecticut official, has just started an Outcomes Rate Card — a way for a government to pay for home visits for vulnerable families. The social service agencies get base pay, but also bonuses. If a client has a full-term birth, the agency gets an extra $135 for a low-risk family, $170 for a hard-to-help one. A client who finds stable housing brings $150 or $220 to the agency, depending on the family’s situation….(More)”.

Ethical Concerns of and Risk Mitigation Strategies for Crowdsourcing Contests and Innovation Challenges: Scoping Review


Joseph D Tucker at the Journal of  Medical Internet Research: “Crowdsourcing contests (also called innovation challenges, innovation contests, and inducement prize contests) can be used to solicit multisectoral feedback on health programs and design public health campaigns. They consist of organizing a steering committee, soliciting contributions, engaging the community, judging contributions, recognizing a subset of contributors, and sharing with the community.

Objective: This scoping review describes crowdsourcing contests by stage, examines ethical problems at each stage, and proposes potential ways of mitigating risk.

Methods: Our analysis was anchored in the specific example of a crowdsourcing contest that our team organized to solicit videos promoting condom use in China. The purpose of this contest was to create compelling 1-min videos to promote condom use. We used a scoping review to examine the existing ethical literature on crowdsourcing to help identify and frame ethical concerns at each stage.

Results: Crowdsourcing has a group of individuals solve a problem and then share the solution with the public. Crowdsourcing contests provide an opportunity for community engagement at each stage: organizing, soliciting, promoting, judging, recognizing, and sharing. Crowdsourcing poses several ethical concerns: organizing—potential for excluding community voices; soliciting—potential for overly narrow participation; promoting—potential for divulging confidential information; judging—potential for biased evaluation; recognizing—potential for insufficient recognition of the finalist; and sharing—potential for the solution to not be implemented or widely disseminated.

Conclusions: Crowdsourcing contests can be effective and engaging public health tools but also introduce potential ethical problems. We present methods for the responsible conduct of crowdsourcing contests… (More)”.

Including all voices in international data-sharing governance


Jane Kaye et al in Human Genomics: “Governments, funding bodies, institutions, and publishers have developed a number of strategies to encourage researchers to facilitate access to datasets. The rationale behind this approach is that this will bring a number of benefits and enable advances in healthcare and medicine by allowing the maximum returns from the investment in research, as well as reducing waste and promoting transparency. As this approach gains momentum, these data-sharing practices have implications for many kinds of research as they become standard practice across the world.

The governance frameworks that have been developed to support biomedical research are not well equipped to deal with the complexities of international data sharing. This system is nationally based and is dependent upon expert committees for oversight and compliance, which has often led to piece-meal decision-making. This system tends to perpetuate inequalities by obscuring the contributions and the important role of different data providers along the data stream, whether they be low- or middle-income country researchers, patients, research participants, groups, or communities. As research and data-sharing activities are largely publicly funded, there is a strong moral argument for including the people who provide the data in decision-making and to develop governance systems for their continued participation.

We recommend that governance of science becomes more transparent, representative, and responsive to the voices of many constituencies by conducting public consultations about data-sharing addressing issues of access and use; including all data providers in decision-making about the use and sharing of data along the whole of the data stream; and using digital technologies to encourage accessibility, transparency, and accountability. We anticipate that this approach could enhance the legitimacy of the research process, generate insights that may otherwise be overlooked or ignored, and help to bring valuable perspectives into the decision-making around international data sharing….(More)”.

Making Better Use of Health Care Data


Benson S. Hsu, MD and Emily Griese in Harvard Business Review: “At Sanford Health, a $4.5 billion rural integrated health care system, we deliver care to over 2.5 million people in 300 communities across 250,000 square miles. In the process, we collect and store vast quantities of patient data – everything from admission, diagnostic, treatment and discharge data to online interactions between patients and providers, as well as data on providers themselves. All this data clearly represents a rich resource with the potential to improve care, but until recently was underutilized. The question was, how best to leverage it.

While we have a mature data infrastructure including a centralized data and analytics team, a standalone virtual data warehouse linking all data silos, and strict enterprise-wide data governance, we reasoned that the best way forward would be to collaborate with other institutions that had additional and complementary data capabilities and expertise.

We reached out to potential academic partners who were leading the way in data science, from university departments of math, science, and computer informatics to business and medical schools and invited them to collaborate with us on projects that could improve health care quality and lower costs. In exchange, Sanford created contracts that gave these partners access to data whose use had previously been constrained by concerns about data privacy and competitive-use agreements. With this access, academic partners are advancing their own research while providing real-world insights into care delivery.

The resulting Sanford Data Collaborative, now in its second year, has attracted regional and national partners and is already beginning to deliver data-driven innovations that are improving care delivery, patient engagement, and care access. Here we describe three that hold particular promise.

  • Developing Prescriptive Algorithms…
  • Augmenting Patient Engagement…
  • Improving Access to Care…(More)”.

How to Make A.I. That’s Good for People


Fei-Fei Li in the New York Times: “For a field that was not well known outside of academia a decade ago, artificial intelligence has grown dizzyingly fast. Tech companies from Silicon Valley to Beijing are betting everything on it, venture capitalists are pouring billions into research and development, and start-ups are being created on what seems like a daily basis. If our era is the next Industrial Revolution, as many claim, A.I. is surely one of its driving forces.

It is an especially exciting time for a researcher like me. When I was a graduate student in computer science in the early 2000s, computers were barely able to detect sharp edges in photographs, let alone recognize something as loosely defined as a human face. But thanks to the growth of big data, advances in algorithms like neural networks and an abundance of powerful computer hardware, something momentous has occurred: A.I. has gone from an academic niche to the leading differentiator in a wide range of industries, including manufacturing, health care, transportation and retail.

I worry, however, that enthusiasm for A.I. is preventing us from reckoning with its looming effects on society. Despite its name, there is nothing “artificial” about this technology — it is made by humans, intended to behave like humans and affects humans. So if we want it to play a positive role in tomorrow’s world, it must be guided by human concerns.

I call this approach “human-centered A.I.” It consists of three goals that can help responsibly guide the development of intelligent machines.

First, A.I. needs to reflect more of the depth that characterizes our own intelligence….

No technology is more reflective of its creators than A.I. It has been said that there are no “machine” values at all, in fact; machine values arehuman values. A human-centered approach to A.I. means these machines don’t have to be our competitors, but partners in securing our well-being. However autonomous our technology becomes, its impact on the world — for better or worse — will always be our responsibility….(More).

How tech used to track the flu could change the game for public health response


Cathie Anderson in the Sacramento Bee: “Tech entrepreneurs and academic researchers are tracking the spread of flu in real-time, collecting data from social media and internet-connected devices that show startling accuracy when compared against surveillance data that public health officials don’t report until a week or two later….

Smart devices and mobile apps have the potential to reshape public health alerts and responses,…, for instance, the staff of smart thermometer maker Kinsa were receiving temperature readings that augured the surge of flu patients in emergency rooms there.

Kinsa thermometers are part of the movement toward the Internet of Things – devices that automatically transmit information to a database. No personal information is shared, unless users decide to input information such as age and gender. Using data from more than 1 million devices in U.S. homes, the staff is able to track fever as it hits and use an algorithm to estimate impact for a broader population….

Computational researcher Aaron Miller worked with an epidemiological team at the University of Iowa to assess the feasibility of using Kinsa data to forecast the spread of flu. He said the team first built a model using surveillance data from the CDC and used it to forecast the spread of influenza. Then the team created a model where they integrated the data from Kinsa along with that from the CDC.

“We got predictions that were … 10 to 50 percent better at predicting the spread of flu than when we used CDC data alone,” Miller said. “Potentially, in the future, if you had granular information from the devices and you had enough information, you could imagine doing analysis on a really local level to inform things like school closings.”

While Kinsa uses readings taken in homes, academic researchers and companies such as sickweather.com are using crowdsourcing from social media networks to provide information on the spread of flu. Siddharth Shah, a transformational health industry analyst at Frost & Sullivan, pointed to an award-winning international study led by researchers at Northeastern University that tracked flu through Twitter posts and other key parameters of flu.

When compared with official influenza surveillance systems, the researchers said, the model accurately forecast the evolution of influenza up to six weeks in advance, much earlier than prior models. Such advance warnings would give health agencies significantly more time to expand upon medical resources or to alert the public to measures they can take to prevent transmission of the disease….

For now, Shah said, technology will probably only augment or complement traditional public data streams. However, he added, innovations already are changing how diseases are tracked. Chronic disease management, for instance, is going digital with devices such as Omada health that helps people with Type 2 diabetes better manage health challenges and Noom, a mobile app that helps people stop dieting and instead work toward true lifestyle change….(More).

Infection forecasts powered by big data


Michael Eisenstein at Nature: “…The good news is that the present era of widespread access to the Internet and digital health has created a rich reservoir of valuable data for researchers to dive into….By harvesting and combining these streams of big data with conventional ways of monitoring infectious diseases, the public-health community could gain fresh powers to catch and curb emerging outbreaks before they rage out of control.

Going viral

Data scientists at Google were the first to make a major splash using data gathered online to track infectious diseases. The Google Flu Trends algorithm, launched in November 2008, combed through hundreds of billions of users’ queries on the popular search engine to look for small increases in flu-related terms such as symptoms or vaccine availability. Initial data suggested that Google Flu Trends could accurately map the incidence of flu with a lag of roughly one day. “It was a very exciting use of these data for the purpose of public health,” says Brownstein. “It really did start a whole revolution and new field of work in query data.”

Unfortunately, Google Flu Trends faltered when it mattered the most, completely missing the onset in April 2009 of the H1N1 pandemic. The algorithm also ran into trouble later on in the pandemic. It had been trained against seasonal fluctuations of flu, says Viboud, but people’s behaviour changed in the wake of panic fuelled by media reports — and that threw off Google’s data. …

Nevertheless, its work with Internet usage data was inspirational for infectious-disease researchers. A subsequent study from a team led by Cecilia Marques-Toledo at the Federal University of Minas Gerais in Belo Horizonte, Brazil, used Twitter to get high-resolution data on the spread of dengue fever in the country. The researchers could quickly map new cases to specific cities and even predict where the disease might spread to next (C. A. Marques-Toledo et al. PLoS Negl. Trop. Dis. 11, e0005729; 2017). Similarly, Brownstein and his colleagues were able to use search data from Google and Twitter to project the spread of Zika virus in Latin America several weeks before formal outbreak declarations were made by public-health officials. Both Internet services are used widely, which makes them data-rich resources. But they are also proprietary systems for which access to data is controlled by a third party; for that reason, Generous and his colleagues have opted instead to make use of search data from Wikipedia, which is open source. “You can get the access logs, and how many people are viewing articles, which serves as a pretty good proxy for search interest,” he says.

However, the problems that sank Google Flu Trends still exist….Additionally, online activity differs for infectious conditions with a social stigma such as syphilis or AIDS, because people who are or might be affected are more likely to be concerned about privacy. Appropriate search-term selection is essential: Generous notes that initial attempts to track flu on Twitter were confounded by irrelevant tweets about ‘Bieber fever’ — a decidedly non-fatal condition affecting fans of Canadian pop star Justin Bieber.

Alternatively, researchers can go straight to the source — by using smartphone apps to ask people directly about their health. Brownstein’s team has partnered with the Skoll Global Threats Fund to develop an app called Flu Near You, through which users can voluntarily report symptoms of infection and other information. “You get more detailed demographics about age and gender and vaccination status — things that you can’t get from other sources,” says Brownstein. Ten European Union member states are involved in a similar surveillance programme known as Influenzanet, which has generally maintained 30,000–40,000 active users for seven consecutive flu seasons. These voluntary reporting systems are particularly useful for diseases such as flu, for which many people do not bother going to the doctor — although it can be hard to persuade people to participate for no immediate benefit, says Brownstein. “But we still get a good signal from the people that are willing to be a part of this.”…(More)”.