Paper by Nitin Kohli, Emily Aiken & Joshua E. Blumenstock: “Personal mobility data from mobile phones and other sensors are increasingly used to inform policymaking during pandemics, natural disasters, and other humanitarian crises. However, even aggregated mobility traces can reveal private information about individual movements to potentially malicious actors. This paper develops and tests an approach for releasing private mobility data, which provides formal guarantees over the privacy of the underlying subjects. Specifically, we (1) introduce an algorithm for constructing differentially private mobility matrices and derive privacy and accuracy bounds on this algorithm; (2) use real-world data from mobile phone operators in Afghanistan and Rwanda to show how this algorithm can enable the use of private mobility data in two high-stakes policy decisions: pandemic response and the distribution of humanitarian aid; and (3) discuss practical decisions that need to be made when implementing this approach, such as how to optimally balance privacy and accuracy. Taken together, these results can help enable the responsible use of private mobility data in humanitarian response…(More)”.
Impact Inversion
Blog by Victor Zhenyi Wang: “The very first project I worked on when I transitioned from commercial data science to development was during the nadir between South Africa’s first two COVID waves. A large international foundation was interested in working with the South African government and a technology non-profit to build an early warning system for COVID. The non-profit operated a WhatsApp based health messaging service that served about 2 million people in South Africa. The platform had run a COVID symptoms questionnaire which the foundation hoped could help the government predict surges in cases.
This kind of data-based “nowcasting” proved a useful tool in a number of other places e.g. some cities in the US. Yet in the context of South Africa, where the National Department of Health was mired in serious capacity constraints, government stakeholders were bearish about the usefulness of such a tool. Nonetheless, since the foundation was interested in funding this project, we went ahead with it anyway. The result was that we pitched this “early warning system” a handful of times to polite public health officials but it was otherwise never used. A classic case of development practitioners rendering problems technical and generating non-solutions that primarily serve the strategic objectives of the funders.
The technology non-profit did however express interest in a different kind of service — what about a language model that helps users answer questions about COVID? The non-profit’s WhatsApp messaging service is menu-based and they thought that a natural language interface could provide a better experience for users by letting them engage with health content on their own terms. Since we had ample funding from the foundation for the early warning system, we decided to pursue the chatbot project.
The project has now spanned to multiple other services run by the same non-profit, including the largest digital health service in South Africa. The project has won multiple grants and partnerships, including with Google, and has spun out into its own open source library. In many ways, in terms of sheer number of lives affected, this is the most impactful project I have had the privilege of supporting in my career in development, and I am deeply grateful to have been part of the team involved bringing it into existence.
Yet the truth is, the “impact” of this class of interventions remain unclear. Even though a large randomized controlled trial was done to assess the impact of the WhatsApp service, such an evaluation only captures the performance of the service on outcome variables determined by the non-profit, not on whether these outcomes are appropriate. It certainly does not tell us whether the service was the best means available to achieve the ultimate goal of improving the lives of those in communities underserved by health services.
This project, and many others that I have worked on as a data scientist in development, uses an implicit framework for impact which I describe as the design-to-impact pipeline. A technology is designed and developed, then its impact is assessed on the world. There is a strong emphasis to reform, to improve the design, development, and deployment of development technologies. Development practitioners have a broad range of techniques to make sure that the process of creation is ethical and responsible — in some sense, legitimate. With the broad adoption of data-based methods of program evaluation, e.g. randomized control trials, we might even make knowledge claims that an intervention truly ought to bring certain benefits to communities in which the intervention is placed. This view imagines that technologies, once this process is completed, is simply unleashed onto the world, and its impact is simply what was assessed ex ante. An industry of monitoring and evaluation surrounds its subsequent deployment; the relative success of interventions depends on the performance of benchmark indicators…(More)”.
Building a Responsible Humanitarian Approach: The ICRC’s policy on Artificial Intelligence
Policy by the ICRC: “…is anchored in a purely humanitarian approach driven by our mandate and Fundamental Principles. It is meant to help ICRC staff learn about AI and safely explore its humanitarian potential.
This policy is the result of a collaborative and multidisciplinary approach that leveraged the ICRC’s humanitarian and operational expertise, existing international AI standards, and the guidance and feedback of external experts.
Given the constantly evolving nature of AI, this document cannot possibly address all the questions and challenges that will arise in the future, but we hope that it provides a solid basis and framework to ensure we take a responsible and human-centred approach when using AI in support of our mission, in line with our 2024–2027 Institutional Strategy…(More)”.
Building a Policy Compass: Navigating Future Migration with Anticipatory Methods
Report by Sara Marcucci and Stefaan Verhulst: “Migration is a complex, dynamic issue, shaped by interconnected drivers like climate change, political shifts, and economic instability. Traditional migration policies often fall short, reacting to events after they unfold. In a rapidly changing world, anticipating migration trends is essential for developing responsive, proactive, and informed policies that address emerging challenges before they escalate. “Building a Policy Compass: Navigating Future Migration with Anticipatory Methods” introduces a suite of methods that aim to shift migration policy toward evidence-based, forward-looking decisions. This report, published for the Big Data for Migration Alliance, provides an overview of the challenges and criteria to consider when selecting and using anticipatory methods for migration policy.
To guide policymakers, the report organizes these methods into a taxonomy based on three categories:
- Experience-Based Methods: These capture lived experiences through approaches like narrative interviews and participatory action research. They ground migration policy in the perspectives of those directly affected by it.
- Expertise-Based Methods: Using specialized knowledge from migration experts, methods such as expert panels or Delphi processes can inform nuanced policy decisions.
- Exploration-Based Methods: These methods, including scenario planning and wildcards analysis, encourage creative, out-of-the-box thinking for addressing unexpected migration challenges.
The report emphasizes that not every method is suited to all migration contexts and offers eight criteria to guide method selection…(More)”.
Privacy guarantees for personal mobility data in humanitarian response
Paper by Nitin Kohli, Emily Aiken & Joshua E. Blumenstock: “Personal mobility data from mobile phones and other sensors are increasingly used to inform policymaking during pandemics, natural disasters, and other humanitarian crises. However, even aggregated mobility traces can reveal private information about individual movements to potentially malicious actors. This paper develops and tests an approach for releasing private mobility data, which provides formal guarantees over the privacy of the underlying subjects. Specifically, we (1) introduce an algorithm for constructing differentially private mobility matrices and derive privacy and accuracy bounds on this algorithm; (2) use real-world data from mobile phone operators in Afghanistan and Rwanda to show how this algorithm can enable the use of private mobility data in two high-stakes policy decisions: pandemic response and the distribution of humanitarian aid; and (3) discuss practical decisions that need to be made when implementing this approach, such as how to optimally balance privacy and accuracy. Taken together, these results can help enable the responsible use of private mobility data in humanitarian response…(More)”.
Access, Signal, Action: Data Stewardship Lessons from Valencia’s Floods
Article by Marta Poblet, Stefaan Verhulst, and Anna Colom: “Valencia has a rich history in water management, a legacy shaped by both triumphs and tragedies. This connection to water is embedded in the city’s identity, yet modern floods test its resilience in new ways.
During the recent floods, Valencians experienced a troubling paradox. In today’s connected world, digital information flows through traditional and social media, weather apps, and government alert systems designed to warn us of danger and guide rapid responses. Despite this abundance of data, a tragedy unfolded last month in Valencia. This raises a crucial question: how can we ensure access to the right data, filter it for critical signals, and transform those signals into timely, effective action?
Data stewardship becomes essential in this process.
In particular, the devastating floods in Valencia underscore the importance of:
- having access to data to strengthen the signal (first mile challenges)
- separating signal from noise
- translating signal into action (last mile challenges)…(More)”.
Operational Learning
International Red Cross: “Operational learning in emergencies is the lesson learned from managing and dealing with crises, refining protocols for resource allocation, decision-making, communication strategies, and others. The summaries are generated using AI and Large Language Models, based on data coming from Final DREF Reports, Emergency Appeal reports and others…(More)”

Proactive Mapping to Manage Disaster
Article by Andrew Mambondiyani: “..In March 2019, Cyclone Idai ravaged Zimbabwe, killing hundreds of people and leaving a trail of destruction. The Global INFORM Risk Index data shows that Zimbabwe is highly vulnerable to extreme climate-related events like floods, cyclones, and droughts, which in turn destroy infrastructure, displace people, and result in loss of lives and livelihoods.
Severe weather events like Idai have exposed the shortcomings of Zimbabwe’s traditional disaster-management system, which was devised to respond to environmental disasters by providing relief and rehabilitation of infrastructure and communities. After Idai, a team of climate-change researchers from three Zimbabwean universities and the local NGO DanChurchAid (DCA) concluded that the nation must adopt a more proactive approach by establishing an early-warning system to better prepare for and thereby prevent significant damage and death from such disasters.
In response to these findings, the Open Mapping Hub—Eastern and Southern Africa (ESA Hub)—launched a program in 2022 to develop an anticipatory-response approach in Zimbabwe. The ESA Hub is a regional NGO based in Kenya created by the Humanitarian OpenStreetMap Team (HOT), an international nonprofit that uses open-mapping technology to reduce environmental disaster risk. One of HOT’s four global hubs and its first in Africa, the ESA Hub was created in 2021 to facilitate the aggregation, utilization, and dissemination of high-quality open-mapping data across 23 countries in Eastern and Southern Africa. Open-source expert Monica Nthiga leads the hub’s team of 13 experts in mapping, open data, and digital content. The team collaborates with community-based organizations, humanitarian organizations, governments, and UN agencies to meet their specific mapping needs to best anticipate future climate-related disasters.
“The ESA Hub’s [anticipatory-response] project demonstrates how preemptive mapping can enhance disaster preparedness and resilience planning,” says Wilson Munyaradzi, disaster-services manager at the ESA Hub.
Open-mapping tools and workflows enable the hub to collect geospatial data to be stored, edited, and reviewed for quality assurance prior to being shared with its partners. “Geospatial data has the potential to identify key features of the landscape that can help plan and prepare before disasters occur so that mitigation methods are put in place to protect lives and livelihoods,” Munyaradzi says…(More)”.
Emerging technologies in the humanitarian sector
Report and project by Rand: “Emerging technologies have often been explored in the humanitarian sector through small scale pilot projects, testing their application in a specific context with limited opportunities to replicate the testing across various contexts. The level of familiarity and knowledge of technological development varies across the specific types of humanitarian activities undertaken and technology areas considered.
The study team identified five promising technology areas for the humanitarian sector that could be further explored out to 2030:
- Advanced manufacturing systems are likely to offer humanitarians opportunities to produce resources and tools in an operating environment characterised by scarcity, the rise of simultaneous crises, and exposure to more intense and severe climate events.
- Early Warning Systems are likely to support preparedness and response efforts across the humanitarian sector while multifactorial crises are likely to arise.
- Camp monitoring systems are likely to support efforts not only to address security risks, but also support planning and management activities of sites or the health and wellbeing of displaced populations.
- Coordination platforms are likely to enhance data collection and information-sharing across various humanitarian stakeholders for the development of timely and bespoke crisis response.
- Privacy-enhancing technologies (PETs) can support ongoing efforts to comply with increased data privacy and data protection requirements in a humanitarian operating environment in which data collection will remain necessary.
Beyond these five technology areas, the study team also considered three innovation journey opportunities:
- The establishment of a technology horizon scanning coalition
- Visioning for emerging technologies in crisis recovery
- An emerging technology narrative initiative.
To accompany the deployment of specific technologies in the humanitarian sector, the study team also developed a four-step approach aimed to identify specific guidance needs for end-users and humanitarian practitioners…(More)”.
The Power of Volunteers: Remote Mapping Gaza and Strategies in Conflict Areas
Blog by Jessica Pechmann: “…In Gaza, increased conflict since October 2023 has caused a prolonged humanitarian crisis. Understanding the impact of the conflict on buildings has been challenging, since pre-existing datasets from artificial intelligence and machine learning (AI/ML) models and OSM were not accurate enough to create a full building footprint baseline. The area’s buildings were too dense, and information on the ground was impossible to collect safely. In these hard-to-reach areas, HOT’s remote and crowdsourced mapping methodology was a good fit for collecting detailed information visible on aerial imagery.
In February 2024, after consultation with humanitarian and UN actors working in Gaza, HOT decided to create a pre-conflict dataset of all building footprints in the area in OSM. HOT’s community of OpenStreetMap volunteers did all the data work, coordinating through HOT’s Tasking Manager. The volunteers made meticulous edits to add missing data and to improve existing data. Due to protection and data quality concerns, only expert volunteer teams were assigned to map and validate the area. As in other areas that are hard to reach due to conflict, HOT balanced the data needs with responsible data practices based on the context.
Comparing AI/ML with human-verified OSM building datasets in conflict zones
AI/ML is becoming an increasingly common and quick way to obtain building footprints across large areas. Sources for automated building footprints range from worldwide datasets by Microsoft or Google to smaller-scale open community-managed tools such as HOT’s new application, fAIr.
Now that HOT volunteers have completely updated and validated all OSM buildings in visible imagery pre-conflict, OSM has 18% more individual buildings in the Gaza strip than Microsoft’s ML buildings dataset (estimated 330,079 buildings vs 280,112 buildings). However, in contexts where there has not been a coordinated update effort in OSM, the numbers may differ. For example, in Sudan where there has not been a large organized editing campaign, there are just under 1,500,000 in OSM, compared to over 5,820,000 buildings in Microsoft’s ML data. It is important to note that the ML datasets have not been human-verified and their accuracy is not known. Google Open Buildings has over 26 million building features in Sudan, but on visual inspection, many of these features are noise in the data that the model incorrectly identified as buildings in the uninhabited desert…(More)”.