Understanding Data Use: Building M&E Systems that Empower Users


Paper by Susan Stout, Vinisha Bhatia, and Paige Kirby: “We know that Monitoring and Evaluation (M&E) aims to support accountability and learning, in order to drive better outcomes…The paper, Understanding Data Use: Building M&E Systems that Empower Users, emphasizes how critical it is for decision makers to consider users’ decision space – from the institutional all the way to technical levels – in achieving data uptake.

Specifically, we call on smart mapping of this decision space – what do intended M&E users need, and what institutional factors shape those needs? With this understanding, we can better anticipate what types of data are most useful, and invest in systems to support data-driven decision making and better outcomes.

Mapping decision space is essential to understanding M&E data use. And as we’ve explored before, the development community has the opportunity to unlock existing resources to access more and better data that fits the needs of development actors to meet the SDGs….(More)”.

The rise of policy innovation labs: A catalog of policy innovation labs across Canada


Report by the Centre for Policy Innovation and Public Engagement (CPIPE): “In recent years, governments all over the world have been embracing new and innovative ways to develop public policies and design public services, from crowdsourcing to human-centred design thinking. This trend in government innovation has led to the rise of the Policy Innovation Lab (PIL): individual units, both inside and outside of government, that apply the traditional principles of scientific laboratories – experimentation, testing, and measurement – to social problems.

PILs are an increasingly important development in public policy making, with a variety of methods and approaches to building relationships between governments, organizations, and citizens, and generating ideas and designing policy. Yet, these labs are under-researched: many are established without a full understanding of their role and value to the policy community. We aim to address this knowledge gap, and create opportunities where policy innovators can make connections with their peers and learn about the current practices and applications of policy innovation from one another.

This report identifies the innovation labs in Canada, profiling their methodologies, projects, and partners, mapping the policy innovation landscape across the country. Each one-page summary provides a profile for each lab, and highlights the existing innovation practices and networks in the public, academic, non-profit, and private sectors, and identifies methodological and ideological trends across the different labs and networks.

This report is the first of its kind in North America. In this highly dynamic space, new labs are emerging and disappearing all the time. The purpose of this report is to put a spotlight on policy innovations and their successes, and to build and strengthen connections between researchers, policymakers, and policy innovators. Through a strengthened and sustained community of practice, we hope to see governments continue to embrace new approaches for effective policymaking…(More)”.

Better ways to measure the new economy


Valerie Hellinghausen and Evan Absher at Kauffman Foundation: “The old measure of “jobs numbers” as an economic indicator is shifting to new metrics to measure a new economy.

With more communities embracing inclusive entrepreneurial ecosystems as the new model of economic development, entrepreneurs, ecosystem builders, and government agencies – at all levels – need to work together on data-driven initiatives. While established measures still have a place, new metrics have the potential to deliver the timely and granular information that is more useful at the local level….

Three better ways to measure the new economy:

  1. National and local datasets:Numbers used to discuss the economy are national level and usually not very timely. These numbers are useful to understand large trends, but fail to capture local realities. One way to better measure local economies is to use local administrative datasets. There are many obstacles with this approach, but the idea is gaining interest. Data infrastructure, policies, and projects are building connections between local and national agencies. Joining different levels of government data will provide national scale and local specificity.
  1. Private and public data:The words private and public typically reflect privacy issues, but there is another public and private dimension. Public institutions possess vast amounts of data, but so do private companies. For instance, sites like PayPal, Square, Amazon, and Etsy possess data that could provide real-time assessment of an individual company’s financial health. The concept of credit and risk could be expanded to benefit those currently underserved, if combined with local administrative information like tax, wage, and banking data. Fair and open use of private data could open credit to currently underfunded entrepreneurs.
  1. New metrics:Developing connections between different datasets will result in new metrics of entrepreneurial activity: metrics that measure human connection, social capital, community creativity, and quality of life. Metrics that capture economic activity at the community level and in real time. For example, the Kauffman Foundation has funded research that uses labor data from private job-listing sites to better understand the match between the workforce entrepreneurs need and the workforce available within the immediate community. But new metrics are not enough, they must connect to the final goal of economic independence. Using new metrics to help ecosystems understand how policies and programs impact entrepreneurship is the final step to measuring local economies….(More)”.

An Overview of National AI Strategies


Medium Article by Tim Dutton: “The race to become the global leader in artificial intelligence (AI) has officially begun. In the past fifteen months, Canada, China, Denmark, the EU Commission, Finland, France, India, Italy, Japan, Mexico, the Nordic-Baltic region, Singapore, South Korea, Sweden, Taiwan, the UAE, and the UK have all released strategies to promote the use and development of AI. No two strategies are alike, with each focusing on different aspects of AI policy: scientific research, talent development, skills and education, public and private sector adoption, ethics and inclusion, standards and regulations, and data and digital infrastructure.

This article summarizes the key policies and goals of each strategy, as well as related policies and initiatives that have announced since the release of the initial strategies. It also includes countries that have announced their intention to develop a strategy or have related AI policies in place….(More)”.

‘To own or not to own?’ A study on the determinants and consequences of alternative intellectual property rights arrangements in crowdsourcing for innovation contests


Paper by Nuran Acur, Mariangela Piazza and Giovanni Perrone: “Firms are increasingly engaging in crowdsourcing for innovation to access new knowledge beyond their boundaries; however, scholars are no closer to understanding what guides seeker firms in deciding the level at which to acquire rights from solvers and the effect that this decision has on the performance of crowdsourcing contests.

Integrating Property Rights Theory and the problem solving perspective whist leveraging exploratory interviews and observations, we build a theoretical framework to examine how specific attributes of the technical problem broadcast affect the seekers’ choice between alternative intellectual property rights (IPR) arrangements that call for acquiring or licensing‐in IPR from external solvers (i.e. with high and low degrees of ownership respectively). Each technical problem differs in the knowledge required to be solved as well as in the stage of development it occurs of the innovation process and seeker firms pay great attention to such characteristics when deciding about the IPR arrangement they choose for their contests.

In addition, we analyze how this choice between acquiring and licensing‐in IPR, in turn, influences the performance of the contest. We empirically test our hypotheses analyzing a unique dataset of 729 challenges broadcast on the InnoCentive platform from 2010 to 2016. Our results indicate that challenges related to technical problems in later stages of the innovation process are positively related to the seekers’ preference toward IPR arrangements with a high level of ownership, while technical problems involving a higher number of knowledge domains are not.

Moreover, we found that IPR arrangements with a high level of ownership negatively affect solvers’ participation and that IPR arrangement plays a mediating role between the attributes of the technical problem and the solvers’ self‐selection process. Our article contributes to the open innovation and crowdsourcing literature and provides practical implications for both managers and contest organizers….(More)”.

Trust, Security, and Privacy in Crowdsourcing


Guest Editorial to Special Issue of IEEE Internet of Things Journal: “As we become increasingly reliant on intelligent, interconnected devices in every aspect of our lives, critical trust, security, and privacy concerns are raised as well.

First, the sensing data provided by individual participants is not always reliable. It may be noisy or even faked due to various reasons, such as poor sensor quality, lack of sensor calibration, background noise, context impact, mobility, incomplete view of observations, or malicious attacks. The crowdsourcing applications should be able to evaluate the trustworthiness of collected data in order to filter out the noisy and fake data that may disturb or intrude a crowdsourcing system. Second, providing data (e.g., photographs taken with personal mobile devices) or using IoT applications may compromise data providers’ personal data privacy (e.g., location, trajectory, and activity privacy) and identity privacy. Therefore, it becomes essential to assess the trust of the data while preserving the data providers’ privacy. Third, data analytics and mining in crowdsourcing may disclose the privacy of data providers or related entities to unauthorized parities, which lowers the willingness of participants to contribute to the crowdsourcing system, impacts system acceptance, and greatly impedes its further development. Fourth, the identities of data providers could be forged by malicious attackers to intrude the whole crowdsourcing system. In this context, trust, security, and privacy start to attract a special attention in order to achieve high quality of service in each step of crowdsourcing with regard to data collection, transmission, selection, processing, analysis and mining, as well as utilization.

Trust, security, and privacy in crowdsourcing receives increasing attention. Many methods have been proposed to protect privacy in the process of data collection and processing. For example, data perturbation can be adopted to hide the real data values during data collection. When preprocessing the collected data, data anonymization (e.g., k-anonymization) and fusion can be applied to break the links between the data and their sources/providers. In application layer, anonymity is used to mask the real identities of data sources/providers. To enable privacy-preserving data mining, secure multiparty computation (SMC) and homomorphic encryption provide options for protecting raw data when multiple parties jointly run a data mining algorithm. Through cryptographic techniques, no party knows anything else than its own input and expected results. For data truth discovery, applicable solutions include correlation-based data quality analysis and trust evaluation of data sources. But current solutions are still imperfect, incomprehensive, and inefficient….(More)”.

Data Science Thinking: The Next Scientific, Technological and Economic Revolution


Book by Longbing Cao: “This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education?  How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists?

Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective.

The topics cover an extremely wide spectrum of essential and relevant aspects of data science, spanning its evolution, concepts, thinking, challenges, discipline, and foundation, all the way to industrialization, profession, education, and the vast array of opportunities that data science offers. The book’s three parts each detail layers of these different aspects….(More)”.

The Risks of Dangerous Dashboards in Basic Education


Lant Pritchett at the Center for Global Development: “On June 1, 2009 Air France flight 447 from Rio de Janeiro to Paris crashed into the Atlantic Ocean killing all 228 people on board. While the Airbus 330 was flying on auto-pilot, the different speed indicators received by the on-board navigation computers started to give conflicting speeds, almost certainly because the pitot tubes responsible for measuring air speed had iced over. Since the auto-pilot could not resolve conflicting signals and hence did not know how fast the plane was actually going, it turned control of the plane over to the two first officers (the captain was out of the cockpit). Subsequent flight simulator trials replicating the conditions of the flight conclude that had the pilots done nothing at all everyone would have lived—nothing was actually wrong; only the indicators were faulty, not the actual speed. But, tragically, the pilots didn’t do nothing….

What is the connection to education?

Many countries’ systems of basic education are in “stall” condition.

A recent paper of Beatty et al. (2018) uses information from the Indonesia Family Life Survey, a representative household survey that has been carried out in several waves with the same individuals since 2000 and contains information on whether individuals can answer simple arithmetic questions. Figure 1, showing the relationship between the level of schooling and the probability of answering a typical question correctly, has two shocking results.

First, the difference in the likelihood a person can answer a simple mathematics question correctly differs by only 20 percent between individuals who have completed less than primary school (<PS)—who can answer correctly (adjusted for guessing) about 20 percent of the time—and those who have completed senior secondary school or more (>=SSS), who answer correctly only about 40 percent of the time. These are simple multiple choice questions like whether 56/84 is the same fraction as (can be reduced to) 2/3, and whether 1/3-1/6 equals 1/6. This means that in an entire year of schooling, less than 2 additional children per 100 gain the ability to answer simple arithmetic questions.

Second, this incredibly poor performance in 2000 got worse by 2014. …

What has this got to do with education dashboards? The way large bureaucracies prefer to work is to specify process compliance and inputs and then measure those as a means of driving performance. This logistical mode of managing an organization works best when both process compliance and inputs are easily “observable” in the economist’s sense of easily verifiable, contractible, adjudicated. This leads to attention to processes and inputs that are “thin” in the Clifford Geertz sense (adopted by James Scott as his primary definition of how a “high modern” bureaucracy and hence the state “sees” the world). So in education one would specify easily-observable inputs like textbook availability, class size, school infrastructure. Even if one were talking about “quality” of schooling, a large bureaucracy would want this too reduced to “thin” indicators, like the fraction of teachers with a given type of formal degree, or process compliance measures, like whether teachers were hired based on some formal assessment.

Those involved in schooling can then become obsessed with their dashboards and the “thin” progress that is being tracked and easily ignore the loud warning signals saying: Stall!…(More)”.

Searching for the Smart City’s Democratic Future


Article by Bianca Wylie at the Center for International Governance Innovation: “There is a striking blue building on Toronto’s eastern waterfront. Wrapped top to bottom in bright, beautiful artwork by Montreal illustrator Cecile Gariepy, the building — a former fish-processing plant — stands out alongside the neighbouring parking lots and a congested highway. It’s been given a second life as an office for Sidewalk Labs — a sister company to Google that is proposing a smart city development in Toronto. Perhaps ironically, the office is like the smart city itself: something old repackaged to be light, fresh and novel.

“Our mission is really to use technology to redefine urban life in the twenty-first century.”

Dan Doctoroff, CEO of Sidewalk Labs, shared this mission in an interview with Freakonomics Radio. The phrase is a variant of the marketing language used by the smart city industry at large. Put more simply, the term “smart city” is usually used to describe the use of technology and data in cities.

No matter the words chosen to describe it, the smart city model has a flaw at its core: corporations are seeking to exert influence on urban spaces and democratic governance. And because most governments don’t have the policy in place to regulate smart city development — in particular, projects driven by the fast-paced technology sector — this presents a growing global governance concern.

This is where the story usually descends into warnings of smart city dystopia or failure. Loads of recent articles have detailed the science fiction-style city-of-the-future and speculated about the perils of mass data collection, and for good reason — these are important concepts that warrant discussion. It’s time, however, to push past dystopian narratives and explore solutions for the challenges that smart cities present in Toronto and globally…(More)”.

Data Publics: Urban Protest, Analytics and the Courts


Article by Anthony McCosker and Timothy Graham in MC Journal: “There are many examples globally of the use of social media to engage publics in battles over urban development or similar issues (e.g. Fredericks and Foth). Some have asked how social media might be better used by neighborhood organisations to mobilise protest and save historic buildings, cultural landmarks or urban sites (Johnson and Halegoua). And we can only note here the wealth of research literature on social movements, protest and social media. To emphasise Gerbaudo’s point, drawing on Mattoni, we “need to account for how exactly the use of these media reshapes the ‘repertoire of communication’ of contemporary movements and affects the experience of participants” (2). For us, this also means better understanding the role that social data plays in both aiding and reshaping urban protest or arming third sector groups with evidence useful in social institutions such as the courts.

New modes of digital engagement enable forms of distributed digital citizenship, which Meikle sees as the creative political relationships that form through exercising rights and responsibilities. Associated with these practices is the transition from sanctioned, simple discursive forms of social protest in petitions, to new indicators of social engagement in more nuanced social media data and the more interactive forms of online petition platforms like change.org or GetUp (Halpin et al.). These technical forms code publics in specific ways that have implications for contemporary protest action. That is, they provide the operational systems and instructions that shape social actions and relationships for protest purposes (McCosker and Milne).

All protest and social movements are underwritten by explicit or implicit concepts of participatory publics as these are shaped, enhanced, or threatened by communication technologies. But participatory protest publics are uneven, and as Kelty asks: “What about all the people who are neither protesters nor Twitter users? In the broadest possible sense this ‘General Public’ cannot be said to exist as an actual entity, but only as a kind of virtual entity” (27). Kelty is pointing to the porous boundary between a general public and an organised public, or formal enterprise, as a reminder that we cannot take for granted representations of a public, or the public as a given, in relation to Like or follower data for instance.

If carefully gauged, the concept of data publics can be useful. To start with, the notions of publics and publicness are notoriously slippery. Baym and boyd explore the differences between these two terms, and the way social media reconfigures what “public” is. Does a Comment or a Like on a Facebook Page connect an individual sufficiently to an issues-public? As far back as the 1930s, John Dewey was seeking a pragmatic approach to similar questions regarding human association and the pluralistic space of “the public”. For Dewey, “the machine age has so enormously expanded, multiplied, intensified and complicated the scope of the indirect consequences [of human association] that the resultant public cannot identify itself” (157). To what extent, then, can we use data to constitute a public in relation to social protest in the age of data analytics?

There are numerous well formulated approaches to studying publics in relation to social media and social networks. Social network analysis (SNA) determines publics, or communities, through links, ties and clustering, by measuring and mapping those connections and to an extent assuming that they constitute some form of sociality. Networked publics (Ito, 6) are understood as an outcome of social media platforms and practices in the use of new digital media authoring and distribution tools or platforms and the particular actions, relationships or modes of communication they afford, to use James Gibson’s sense of that term. “Publics can be reactors, (re)makers and (re)distributors, engaging in shared culture and knowledge through discourse and social exchange as well as through acts of media reception” (Ito 6). Hashtags, for example, facilitate connectivity and visibility and aid in the formation and “coordination of ad hoc issue publics” (Bruns and Burgess 3). Gray et al., following Ruppert, argue that “data publics are constituted by dynamic, heterogeneous arrangements of actors mobilised around data infrastructures, sometimes figuring as part of them, sometimes emerging as their effect”. The individuals of data publics are neither subjugated by the logics and metrics of digital platforms and data structures, nor simply sovereign agents empowered by the expressive potential of aggregated data (Gray et al.).

Data publics are more than just aggregates of individual data points or connections. They are inherently unstable, dynamic (despite static analysis and visualisations), or vibrant, and ephemeral. We emphasise three key elements of active data publics. First, to be more than an aggregate of individual items, a data public needs to be consequential (in Dewey’s sense of issues or problem-oriented). Second, sufficient connection is visible over time. Third, affective or emotional activity is apparent in relation to events that lend coherence to the public and its prevailing sentiment. To these, we add critical attention to the affordising processes – or the deliberate and incidental effects of datafication and analysis, in the capacities for data collection and processing in order to produce particular analytical outcomes, and the data literacies these require. We return to the latter after elaborating on the Save the Palace case….(More)”.