Alan Rothman at LLRX: “…For all of these good, bad or indifferent workplaces, a key question is whether any of the actions of management to engage the staff and listen to their concerns ever resulted in improved working conditions and higher levels of job satisfaction?
The answer is most often “yes”. Just having a say in, and some sense of control over, our jobs and workflows can indeed have a demonstrable impact on morale, camaraderie and the bottom line. As posited in the Hawthorne Effect, also termed the “Observer Effect”, this was first discovered during studies in the 1920’s and 1930’s when the management of a factory made improvements to the lighting and work schedules. In turn, worker satisfaction and productivity temporarily increased. This was not so much because there was more light, but rather, that the workers sensed that management was paying attention to, and then acting upon, their concerns. The workers perceived they were no longer just cogs in a machine.
Perhaps, too, the Hawthorne Effect is in some ways the workplace equivalent of the Heisenberg’s Uncertainty Principle in physics. To vastly oversimplify this slippery concept, the mere act of observing a subatomic particle can change its position.¹
Giving the processes of observation, analysis and change at the enterprise level a modern (but non-quantum) spin, is a fascinating new article in the September 2018 issue of The Atlantic entitled What Your Boss Could Learn by Reading the Whole Company’s Emails, by Frank Partnoy. I highly recommend a click-through and full read if you have an opportunity. I will summarize and annotate it, and then, considering my own thorough lack of understanding of the basics of y=f(x), pose some of my own physics-free questions….
Today the text analytics business, like the work done by KeenCorp, is thriving. It has been long-established as the processing behind email spam filters. Now it is finding other applications including monitoring corporate reputations on social media and other sites.²
The finance industry is another growth sector, as investment banks and hedge funds scan a wide variety of information sources to locate “slight changes in language” that may point towards pending increases or decreases in share prices. Financial research providers are using artificial intelligence to mine “insights” from their own selections of news and analytical sources.
But is this technology effective?
In a paper entitled Lazy Prices, by Lauren Cohen (Harvard Business School and NBER), Christopher Malloy (Harvard Business School and NBER), and Quoc Nguyen (University of Illinois at Chicago), in a draft dated February 22, 2018, these researchers found that the share price of company, in this case NetApp in their 2010 annual report, measurably went down after the firm “subtly changes” its reporting “descriptions of certain risks”. Algorithms can detect such changes more quickly and effectively than humans. The company subsequently clarified in its 2011 annual report their “failure to comply” with reporting requirements in 2010. A highly skilled stock analyst “might have missed that phrase”, but once again its was captured by “researcher’s algorithms”.
In the hands of a “skeptical investor”, this information might well have resulted in them questioning the differences in the 2010 and 2011 annual reports and, in turn, saved him or her a great deal of money. This detection was an early signal of a looming decline in NetApp’s stock. Half a year after the 2011 report’s publication, it was reported that the Syrian government has bought the company and “used that equipment to spy on its citizen”, causing further declines.
Now text analytics is being deployed at a new target: The composition of employees’ communications. Although it has been found that workers have no expectations of privacy in their workplaces, some companies remain reluctant to do so because of privacy concerns. Thus, companies are finding it more challenging to resist the “urge to mine employee information”, especially as text analysis systems continue to improve.
Among the evolving enterprise applications are the human resources departments in assessing overall employee morale. For example, Vibe is such an app that scans through communications on Slack, a widely used enterprise platform. Vibe’s algorithm, in real-time reporting, measures the positive and negative emotions of a work team….(More)”.