Selected Readings on Data Collaboratives


By Neil Britto, David Sangokoya, Iryna Susha, Stefaan Verhulst and Andrew Young

The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of data collaboratives was originally published in 2017.

The term data collaborative refers to a new form of collaboration, beyond the public-private partnership model, in which participants from different sectors (including private companies, research institutions, and government agencies ) can exchange data to help solve public problems. Several of society’s greatest challenges — from addressing climate change to public health to job creation to improving the lives of children — require greater access to data, more collaboration between public – and private-sector entities, and an increased ability to analyze datasets. In the coming months and years, data collaboratives will be essential vehicles for harnessing the vast stores of privately held data toward the public good.

Selected Reading List (in alphabetical order)

Annotated Selected Readings List (in alphabetical order)

Agaba, G., Akindès, F., Bengtsson, L., Cowls, J., Ganesh, M., Hoffman, N., . . . Meissner, F. “Big Data and Positive Social Change in the Developing World: A White Paper for Practitioners and Researchers.” 2014. http://bit.ly/25RRC6N.

  • This white paper, produced by “a group of activists, researchers and data experts” explores the potential of big data to improve development outcomes and spur positive social change in low- and middle-income countries. Using examples, the authors discuss four areas in which the use of big data can impact development efforts:
    • Advocating and facilitating by “opening[ing] up new public spaces for discussion and awareness building;
    • Describing and predicting through the detection of “new correlations and the surfac[ing] of new questions;
    • Facilitating information exchange through “multiple feedback loops which feed into both research and action,” and
    • Promoting accountability and transparency, especially as a byproduct of crowdsourcing efforts aimed at “aggregat[ing] and analyz[ing] information in real time.
  • The authors argue that in order to maximize the potential of big data’s use in development, “there is a case to be made for building a data commons for private/public data, and for setting up new and more appropriate ethical guidelines.”
  • They also identify a number of challenges, especially when leveraging data made accessible from a number of sources, including private sector entities, such as:
    • Lack of general data literacy;
    • Lack of open learning environments and repositories;
    • Lack of resources, capacity and access;
    • Challenges of sensitivity and risk perception with regard to using data;
    • Storage and computing capacity; and
    • Externally validating data sources for comparison and verification.

Ansell, C. and Gash, A. “Collaborative Governance in Theory and Practice.” Journal of Public Administration Research and  Theory 18 (4), 2008. http://bit.ly/1RZgsI5.

  • This article describes collaborative arrangements that include public and private organizations working together and proposes a model for understanding an emergent form of public-private interaction informed by 137 diverse cases of collaborative governance.
  • The article suggests factors significant to successful partnering processes and outcomes include:
    • Shared understanding of challenges,
    • Trust building processes,
    • The importance of recognizing seemingly modest progress, and
    • Strong indicators of commitment to the partnership’s aspirations and process.
  • The authors provide a ‘’contingency theory model’’ that specifies relationships between different variables that influence outcomes of collaborative governance initiatives. Three “core contingencies’’ for successful collaborative governance initiatives identified by the authors are:
    • Time (e.g., decision making time afforded to the collaboration);
    • Interdependence (e.g., a high degree of interdependence can mitigate negative effects of low trust); and
    • Trust (e.g. a higher level of trust indicates a higher probability of success).

Ballivian A, Hoffman W. “Public-Private Partnerships for Data: Issues Paper for Data Revolution Consultation.” World Bank, 2015. Available from: http://bit.ly/1ENvmRJ

  • This World Bank report provides a background document on forming public-prviate partnerships for data with the private sector in order to inform the UN’s Independent Expert Advisory Group (IEAG) on sustaining a “data revolution” in sustainable development.
  • The report highlights the critical position of private companies within the data value chain and reflects on key elements of a sustainable data PPP: “common objectives across all impacted stakeholders, alignment of incentives, and sharing of risks.” In addition, the report describes the risks and incentives of public and private actors, and the principles needed to “build[ing] the legal, cultural, technological and economic infrastructures to enable the balancing of competing interests.” These principles include understanding; experimentation; adaptability; balance; persuasion and compulsion; risk management; and governance.
  • Examples of data collaboratives cited in the report include HP Earth Insights, Orange Data for Development Challenges, Amazon Web Services, IBM Smart Cities Initiative, and the Governance Lab’s Open Data 500.

Brack, Matthew, and Tito Castillo. “Data Sharing for Public Health: Key Lessons from Other Sectors.” Chatham House, Centre on Global Health Security. April 2015. Available from: http://bit.ly/1DHFGVl

  • The Chatham House report provides an overview on public health surveillance data sharing, highlighting the benefits and challenges of shared health data and the complexity in adapting technical solutions from other sectors for public health.
  • The report describes data sharing processes from several perspectives, including in-depth case studies of actual data sharing in practice at the individual, organizational and sector levels. Among the key lessons for public health data sharing, the report strongly highlights the need to harness momentum for action and maintain collaborative engagement: “Successful data sharing communities are highly collaborative. Collaboration holds the key to producing and abiding by community standards, and building and maintaining productive networks, and is by definition the essence of data sharing itself. Time should be invested in establishing and sustaining collaboration with all stakeholders concerned with public health surveillance data sharing.”
  • Examples of data collaboratives include H3Africa (a collaboration between NIH and Wellcome Trust) and NHS England’s care.data programme.

de Montjoye, Yves-Alexandre, Jake Kendall, and Cameron F. Kerry. “Enabling Humanitarian Use of Mobile Phone Data.” The Brookings Institution, Issues in Technology Innovation. November 2014. Available from: http://brook.gs/1JxVpxp

  • Using Ebola as a case study, the authors describe the value of using private telecom data for uncovering “valuable insights into understanding the spread of infectious diseases as well as strategies into micro-target outreach and driving update of health-seeking behavior.”
  • The authors highlight the absence of a common legal and standards framework for “sharing mobile phone data in privacy-conscientious ways” and recommend “engaging companies, NGOs, researchers, privacy experts, and governments to agree on a set of best practices for new privacy-conscientious metadata sharing models.”

Eckartz, Silja M., Hofman, Wout J., Van Veenstra, Anne Fleur. “A decision model for data sharing.” Vol. 8653 LNCS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2014. http://bit.ly/21cGWfw.

  • This paper proposes a decision model for data sharing of public and private data based on literature review and three case studies in the logistics sector.
  • The authors identify five categories of the barriers to data sharing and offer a decision model for identifying potential interventions to overcome each barrier:
    • Ownership. Possible interventions likely require improving trust among those who own the data through, for example, involvement and support from higher management
    • Privacy. Interventions include “anonymization by filtering of sensitive information and aggregation of data,” and access control mechanisms built around identity management and regulated access.  
    • Economic. Interventions include a model where data is shared only with a few trusted organizations, and yield management mechanisms to ensure negative financial consequences are avoided.
    • Data quality. Interventions include identifying additional data sources that could improve the completeness of datasets, and efforts to improve metadata.
    • Technical. Interventions include making data available in structured formats and publishing data according to widely agreed upon data standards.

Hoffman, Sharona and Podgurski, Andy. “The Use and Misuse of Biomedical Data: Is Bigger Really Better?” American Journal of Law & Medicine 497, 2013. http://bit.ly/1syMS7J.

  • This journal articles explores the benefits and, in particular, the risks related to large-scale biomedical databases bringing together health information from a diversity of sources across sectors. Some data collaboratives examined in the piece include:
    • MedMining – a company that extracts EHR data, de-identifies it, and offers it to researchers. The data sets that MedMining delivers to its customers include ‘lab results, vital signs, medications, procedures, diagnoses, lifestyle data, and detailed costs’ from inpatient and outpatient facilities.
    • Explorys has formed a large healthcare database derived from financial, administrative, and medical records. It has partnered with major healthcare organizations such as the Cleveland Clinic Foundation and Summa Health System to aggregate and standardize health information from ten million patients and over thirty billion clinical events.
  • Hoffman and Podgurski note that biomedical databases populated have many potential uses, with those likely to benefit including: “researchers, regulators, public health officials, commercial entities, lawyers,” as well as “healthcare providers who conduct quality assessment and improvement activities,” regulatory monitoring entities like the FDA, and “litigants in tort cases to develop evidence concerning causation and harm.”
  • They argue, however, that risks arise based on:
    • The data contained in biomedical databases is surprisingly likely to be incorrect or incomplete;
    • Systemic biases, arising from both the nature of the data and the preconceptions of investigators are serious threats the validity of research results, especially in answering causal questions;
  • Data mining of biomedical databases makes it easier for individuals with political, social, or economic agendas to generate ostensibly scientific but misleading research findings for the purpose of manipulating public opinion and swaying policymakers.

Krumholz, Harlan M., et al. “Sea Change in Open Science and Data Sharing Leadership by Industry.” Circulation: Cardiovascular Quality and Outcomes 7.4. 2014. 499-504. http://1.usa.gov/1J6q7KJ

  • This article provides a comprehensive overview of industry-led efforts and cross-sector collaborations in data sharing by pharmaceutical companies to inform clinical practice.
  • The article details the types of data being shared and the early activities of GlaxoSmithKline (“in coordination with other companies such as Roche and ViiV”); Medtronic and the Yale University Open Data Access Project; and Janssen Pharmaceuticals (Johnson & Johnson). The article also describes the range of involvement in data sharing among pharmaceutical companies including Pfizer, Novartis, Bayer, AbbVie, Eli Llly, AstraZeneca, and Bristol-Myers Squibb.

Mann, Gideon. “Private Data and the Public Good.” Medium. May 17, 2016. http://bit.ly/1OgOY68.

    • This Medium post from Gideon Mann, the Head of Data Science at Bloomberg, shares his prepared remarks given at a lecture at the City College of New York. Mann argues for the potential benefits of increasing access to private sector data, both to improve research and academic inquiry and also to help solve practical, real-world problems. He also describes a number of initiatives underway at Bloomberg along these lines.    
  • Mann argues that data generated at private companies “could enable amazing discoveries and research,” but is often inaccessible to those who could put it to those uses. Beyond research, he notes that corporate data could, for instance, benefit:
      • Public health – including suicide prevention, addiction counseling and mental health monitoring.
    • Legal and ethical questions – especially as they relate to “the role algorithms have in decisions about our lives,” such as credit checks and resume screening.
  • Mann recognizes the privacy challenges inherent in private sector data sharing, but argues that it is a common misconception that the only two choices are “complete privacy or complete disclosure.” He believes that flexible frameworks for differential privacy could open up new opportunities for responsibly leveraging data collaboratives.

Pastor Escuredo, D., Morales-Guzmán, A. et al, “Flooding through the Lens of Mobile Phone Activity.” IEEE Global Humanitarian Technology Conference, GHTC 2014. Available from: http://bit.ly/1OzK2bK

  • This report describes the impact of using mobile data in order to understand the impact of disasters and improve disaster management. The report was conducted in the Mexican state of Tabasco in 2009 as a multidisciplinary, multi-stakeholder consortium involving the UN World Food Programme (WFP), Telefonica Research, Technical University of Madrid (UPM), Digital Strategy Coordination Office of the President of Mexico, and UN Global Pulse.
  • Telefonica Research, a division of the major Latin American telecommunications company, provided call detail records covering flood-affected areas for nine months. This data was combined with “remote sensing data (satellite images), rainfall data, census and civil protection data.” The results of the data demonstrated that “analysing mobile activity during floods could be used to potentially locate damaged areas, efficiently assess needs and allocate resources (for example, sending supplies to affected areas).”
  • In addition to the results, the study highlighted “the value of a public-private partnership on using mobile data to accurately indicate flooding impacts in Tabasco, thus improving early warning and crisis management.”

* Perkmann, M. and Schildt, H. “Open data partnerships between firms and universities: The role of boundary organizations.” Research Policy, 44(5), 2015. http://bit.ly/25RRJ2c

  • This paper discusses the concept of a “boundary organization” in relation to industry-academic partnerships driven by data. Boundary organizations perform mediated revealing, allowing firms to disclose their research problems to a broad audience of innovators and simultaneously minimize the risk that this information would be adversely used by competitors.
  • The authors identify two especially important challenges for private firms to enter open data or participate in data collaboratives with the academic research community that could be addressed through more involvement from boundary organizations:
    • First is a challenge of maintaining competitive advantage. The authors note that, “the more a firm attempts to align the efforts in an open data research programme with its R&D priorities, the more it will have to reveal about the problems it is addressing within its proprietary R&D.”
    • Second, involves the misalignment of incentives between the private and academic field. Perkmann and Schildt argue that, a firm seeking to build collaborations around its opened data “will have to provide suitable incentives that are aligned with academic scientists’ desire to be rewarded for their work within their respective communities.”

Robin, N., Klein, T., & Jütting, J. “Public-Private Partnerships for Statistics: Lessons Learned, Future Steps.” OECD. 2016. http://bit.ly/24FLYlD.

  • This working paper acknowledges the growing body of work on how different types of data (e.g, telecom data, social media, sensors and geospatial data, etc.) can address data gaps relevant to National Statistical Offices (NSOs).
  • Four models of public-private interaction for statistics are describe: in-house production of statistics by a data-provider for a national statistics office (NSO), transfer of data-sets to NSOs from private entities, transfer of data to a third party provider to manage the NSO and private entity data, and the outsourcing of NSO functions.
  • The paper highlights challenges to public-private partnerships involving data (e.g., technical challenges, data confidentiality, risks, limited incentives for participation), suggests deliberate and highly structured approaches to public-private partnerships involving data require enforceable contracts, emphasizes the trade-off between data specificity and accessibility of such data, and the importance of pricing mechanisms that reflect the capacity and capability of national statistic offices.
  • Case studies referenced in the paper include:
    • A mobile network operator’s (MNO Telefonica) in house analysis of call detail records;
    • A third-party data provider and steward of travel statistics (Positium);
    • The Data for Development (D4D) challenge organized by MNO Orange; and
    • Statistics Netherlands use of social media to predict consumer confidence.

Stuart, Elizabeth, Samman, Emma, Avis, William, Berliner, Tom. “The data revolution: finding the missing millions.” Overseas Development Institute, 2015. Available from: http://bit.ly/1bPKOjw

  • The authors of this report highlight the need for good quality, relevant, accessible and timely data for governments to extend services into underrepresented communities and implement policies towards a sustainable “data revolution.”
  • The solutions focused on this recent report from the Overseas Development Institute focus on capacity-building activities of national statistical offices (NSOs), alternative sources of data (including shared corporate data) to address gaps, and building strong data management systems.

Taylor, L., & Schroeder, R. “Is bigger better? The emergence of big data as a tool for international development policy.” GeoJournal, 80(4). 2015. 503-518. http://bit.ly/1RZgSy4.

  • This journal article describes how privately held data – namely “digital traces” of consumer activity – “are becoming seen by policymakers and researchers as a potential solution to the lack of reliable statistical data on lower-income countries.
  • They focus especially on three categories of data collaborative use cases:
    • Mobile data as a predictive tool for issues such as human mobility and economic activity;
    • Use of mobile data to inform humanitarian response to crises; and
    • Use of born-digital web data as a tool for predicting economic trends, and the implications these have for LMICs.
  • They note, however, that a number of challenges and drawbacks exist for these types of use cases, including:
    • Access to private data sources often must be negotiated or bought, “which potentially means substituting negotiations with corporations for those with national statistical offices;”
    • The meaning of such data is not always simple or stable, and local knowledge is needed to understand how people are using the technologies in question
    • Bias in proprietary data can be hard to understand and quantify;
    • Lack of privacy frameworks; and
    • Power asymmetries, wherein “LMIC citizens are unwittingly placed in a panopticon staffed by international researchers, with no way out and no legal recourse.”

van Panhuis, Willem G., Proma Paul, Claudia Emerson, John Grefenstette, Richard Wilder, Abraham J. Herbst, David Heymann, and Donald S. Burke. “A systematic review of barriers to data sharing in public health.” BMC public health 14, no. 1 (2014): 1144. Available from: http://bit.ly/1JOBruO

  • The authors of this report provide a “systematic literature of potential barriers to public health data sharing.” These twenty potential barriers are classified in six categories: “technical, motivational, economic, political, legal and ethical.” In this taxonomy, “the first three categories are deeply rooted in well-known challenges of health information systems for which structural solutions have yet to be found; the last three have solutions that lie in an international dialogue aimed at generating consensus on policies and instruments for data sharing.”
  • The authors suggest the need for a “systematic framework of barriers to data sharing in public health” in order to accelerate access and use of data for public good.

Verhulst, Stefaan and Sangokoya, David. “Mapping the Next Frontier of Open Data: Corporate Data Sharing.” In: Gasser, Urs and Zittrain, Jonathan and Faris, Robert and Heacock Jones, Rebekah, “Internet Monitor 2014: Reflections on the Digital World: Platforms, Policy, Privacy, and Public Discourse (December 15, 2014).” Berkman Center Research Publication No. 2014-17. http://bit.ly/1GC12a2

  • This essay describe a taxonomy of current corporate data sharing practices for public good: research partnerships; prizes and challenges; trusted intermediaries; application programming interfaces (APIs); intelligence products; and corporate data cooperatives or pooling.
  • Examples of data collaboratives include: Yelp Dataset Challenge, the Digital Ecologies Research Partnerhsip, BBVA Innova Challenge, Telecom Italia’s Big Data Challenge, NIH’s Accelerating Medicines Partnership and the White House’s Climate Data Partnerships.
  • The authors highlight important questions to consider towards a more comprehensive mapping of these activities.

Verhulst, Stefaan and Sangokoya, David, 2015. “Data Collaboratives: Exchanging Data to Improve People’s Lives.” Medium. Available from: http://bit.ly/1JOBDdy

  • The essay refers to data collaboratives as a new form of collaboration involving participants from different sectors exchanging data to help solve public problems. These forms of collaborations can improve people’s lives through data-driven decision-making; information exchange and coordination; and shared standards and frameworks for multi-actor, multi-sector participation.
  • The essay cites four activities that are critical to accelerating data collaboratives: documenting value and measuring impact; matching public demand and corporate supply of data in a trusted way; training and convening data providers and users; experimenting and scaling existing initiatives.
  • Examples of data collaboratives include NIH’s Precision Medicine Initiative; the Mobile Data, Environmental Extremes and Population (MDEEP) Project; and Twitter-MIT’s Laboratory for Social Machines.

Verhulst, Stefaan, Susha, Iryna, Kostura, Alexander. “Data Collaboratives: matching Supply of (Corporate) Data to Solve Public Problems.” Medium. February 24, 2016. http://bit.ly/1ZEp2Sr.

  • This piece articulates a set of key lessons learned during a session at the International Data Responsibility Conference focused on identifying emerging practices, opportunities and challenges confronting data collaboratives.
  • The authors list a number of privately held data sources that could create positive public impacts if made more accessible in a collaborative manner, including:
    • Data for early warning systems to help mitigate the effects of natural disasters;
    • Data to help understand human behavior as it relates to nutrition and livelihoods in developing countries;
    • Data to monitor compliance with weapons treaties;
    • Data to more accurately measure progress related to the UN Sustainable Development Goals.
  • To the end of identifying and expanding on emerging practice in the space, the authors describe a number of current data collaborative experiments, including:
    • Trusted Intermediaries: Statistics Netherlands partnered with Vodafone to analyze mobile call data records in order to better understand mobility patterns and inform urban planning.
    • Prizes and Challenges: Orange Telecom, which has been a leader in this type of Data Collaboration, provided several examples of the company’s initiatives, such as the use of call data records to track the spread of malaria as well as their experience with Challenge 4 Development.
    • Research partnerships: The Data for Climate Action project is an ongoing large-scale initiative incentivizing companies to share their data to help researchers answer particular scientific questions related to climate change and adaptation.
    • Sharing intelligence products: JPMorgan Chase shares macro economic insights they gained leveraging their data through the newly established JPMorgan Chase Institute.
  • In order to capitalize on the opportunities provided by data collaboratives, a number of needs were identified:
    • A responsible data framework;
    • Increased insight into different business models that may facilitate the sharing of data;
    • Capacity to tap into the potential value of data;
    • Transparent stock of available data supply; and
    • Mapping emerging practices and models of sharing.

Vogel, N., Theisen, C., Leidig, J. P., Scripps, J., Graham, D. H., & Wolffe, G. “Mining mobile datasets to enable the fine-grained stochastic simulation of Ebola diffusion.” Paper presented at the Procedia Computer Science. 2015. http://bit.ly/1TZDroF.

  • The paper presents a research study conducted on the basis of the mobile calls records shared with researchers in the framework of the Data for Development Challenge by the mobile operator Orange.
  • The study discusses the data analysis approach in relation to developing a situation of Ebola diffusion built around “the interactions of multi-scale models, including viral loads (at the cellular level), disease progression (at the individual person level), disease propagation (at the workplace and family level), societal changes in migration and travel movements (at the population level), and mitigating interventions (at the abstract government policy level).”
  • The authors argue that the use of their population, mobility, and simulation models provide more accurate simulation details in comparison to high-level analytical predictions and that the D4D mobile datasets provide high-resolution information useful for modeling developing regions and hard to reach locations.

Welle Donker, F., van Loenen, B., & Bregt, A. K. “Open Data and Beyond.” ISPRS International Journal of Geo-Information, 5(4). 2016. http://bit.ly/22YtugY.

  • This research has developed a monitoring framework to assess the effects of open (private) data using a case study of a Dutch energy network administrator Liander.
  • Focusing on the potential impacts of open private energy data – beyond ‘smart disclosure’ where citizens are given information only about their own energy usage – the authors identify three attainable strategic goals:
    • Continuously optimize performance on services, security of supply, and costs;
    • Improve management of energy flows and insight into energy consumption;
    • Help customers save energy and switch over to renewable energy sources.
  • The authors propose a seven-step framework for assessing the impacts of Liander data, in particular, and open private data more generally:
    • Develop a performance framework to describe what the program is about, description of the organization’s mission and strategic goals;
    • Identify the most important elements, or key performance areas which are most critical to understanding and assessing your program’s success;
    • Select the most appropriate performance measures;
    • Determine the gaps between what information you need and what is available;
    • Develop and implement a measurement strategy to address the gaps;
    • Develop a performance report which highlights what you have accomplished and what you have learned;
    • Learn from your experiences and refine your approach as required.
  • While the authors note that the true impacts of this open private data will likely not come into view in the short term, they argue that, “Liander has successfully demonstrated that private energy companies can release open data, and has successfully championed the other Dutch network administrators to follow suit.”

World Economic Forum, 2015. “Data-driven development: pathways for progress.” Geneva: World Economic Forum. http://bit.ly/1JOBS8u

  • This report captures an overview of the existing data deficit and the value and impact of big data for sustainable development.
  • The authors of the report focus on four main priorities towards a sustainable data revolution: commercial incentives and trusted agreements with public- and private-sector actors; the development of shared policy frameworks, legal protections and impact assessments; capacity building activities at the institutional, community, local and individual level; and lastly, recognizing individuals as both produces and consumers of data.

White House Challenges Artificial Intelligence Experts to Reduce Incarceration Rates


Jason Shueh at GovTech: “The U.S. spends $270 billion on incarceration each year, has a prison population of about 2.2 million and an incarceration rate that’s spiked 220 percent since the 1980s. But with the advent of data science, White House officials are asking experts for help.

On Tuesday, June 7, the White House Office of Science and Technology Policy’s Lynn Overmann, who also leads the White House Police Data Initiative, stressed the severity of the nation’s incarceration crisis while asking a crowd of data scientists and artificial intelligence specialists for aid.

“We have built a system that is too large, and too unfair and too costly — in every sense of the word — and we need to start to change it,” Overmann said, speaking at a Computing Community Consortium public workshop.

She argued that the U.S., a country that has the highest amount incarcerated citizens in the world, is in need of systematic reforms with both data tools to process alleged offenders and at the policy level to ensure fair and measured sentences. As a longtime counselor, advisor and analyst for the Justice Department and at the city and state levels, Overman said she has studied and witnessed an alarming number of issues in terms of bias and unwarranted punishments.

For instance, she said that statistically, while drug use is about equal between African-Americans and Caucasians, African-Americans are more likely to be arrested and convicted. They also receive longer prison sentences compared to Caucasian inmates convicted of the same crimes….

Data and digital tools can help curb such pitfalls by increasing efficiency, transparency and accountability, she said.

“We think these types of data exchanges [between officials and technologists] can actually be hugely impactful if we can figure out how to take this information and operationalize it for the folks who run these systems,” Obermann noted.

The opportunities to apply artificial intelligence and data analytics, she said, might include using it to improve questions on parole screenings, using it to analyze police body camera footage, and applying it to criminal justice data for legislators and policy workers….

If the private sector is any indication, artificial intelligence and machine learning techniques could be used to interpret this new and vast supply of law enforcement data. In an earlier presentation by Eric Horvitz, the managing director at Microsoft Research, Horvitz showcased how the company has applied artificial intelligence to vision and language to interpret live video content for the blind. The app, titled SeeingAI, can translate live video footage, captured from an iPhone or a pair of smart glasses, into instant audio messages for the seeing impaired. Twitter’s live-streaming app Periscope has employed similar technology to guide users to the right content….(More)”

Private Data and the Public Good


Gideon Mann‘s remarks on the occasion of the Robert Khan distinguished lecture at The City College of New York on 5/22/16: and opportunities about a specific aspect of this relationship, the broader need for computer science to engage with the real world. Right now, a key aspect of this relationship is being built around the risks and opportunities of the emerging role of data.

Ultimately, I believe that these relationships, between computer science andthe real world, between data science and real problems, hold the promise tovastly increase our public welfare. And today, we, the people in this room,have a unique opportunity to debate and define a more moral dataeconomy….

The hybrid research model proposes something different. The hybrid research model, embeds, as it were, researchers as practitioners.The thought was always that you would be going about your regular run of business,would face a need to innovate to solve a crucial problem, and would do something novel. At that point, you might choose to work some extra time and publish a paper explaining your innovation. In practice, this model rarely works as expected. Tight deadlines mean the innovation that people do in their normal progress of business is incremental..

This model separated research from scientific publication, and shortens thetime-window of research, to what can be realized in a few year time zone.For me, this always felt like a tremendous loss, with respect to the older so-called “ivory tower” research model. It didn’t seem at all clear how this kindof model would produce the sea change of thought engendered byShannon’s work, nor did it seem that Claude Shannon would ever want towork there. This kind of environment would never support the freestanding wonder, like the robot mouse that Shannon worked on. Moreover, I always believed that crucial to research is publication and participation in the scientific community. Without this engagement, it feels like something different — innovation perhaps.

It is clear that the monopolistic environment that enabled AT&T to support this ivory tower research doesn’t exist anymore. .

Now, the hybrid research model was one model of research at Google, butthere is another model as well, the moonshot model as exemplified byGoogle X. Google X brought together focused research teams to driveresearch and development around a particular project — Google Glass and the Self-driving car being two notable examples. Here the focus isn’t research, but building a new product, with research as potentially a crucial blocking issue. Since the goal of Google X is directly to develop a new product, by definition they don’t publish papers along the way, but they’re not as tied to short-term deliverables as the rest of Google is. However, they are again decidedly un-Bell-Labs like — a secretive, tightly focused, non-publishing group. DeepMind is a similarly constituted initiative — working, for example, on a best-in-the-world Go playing algorithm, with publications happening sparingly.

Unfortunately, both of these approaches, the hybrid research model and the moonshot model stack the deck towards a particular kind of research — research that leads to relatively short term products that generate corporate revenue. While this kind of research is good for society, it isn’t the only kind of research that we need. We urgently need research that is longterm, and that is undergone even without a clear financial local impact. Insome sense this is a “tragedy of the commons”, where a shared public good (the commons) is not supported because everyone can benefit from itwithout giving back. Academic research is thus a non-rival, non-excludible good, and thus reasonably will be underfunded. In certain cases, this takes on an ethical dimension — particularly in health care, where the choice ofwhat diseases to study and address has a tremendous potential to affect human life. Should we research heart disease or malaria? This decisionmakes a huge impact on global human health, but is vastly informed by the potential profit from each of these various medicines….

Private Data means research is out of reach

The larger point that I want to make, is that in the absence of places where long-term research can be done in industry, academia has a tremendous potential opportunity. Unfortunately, it is actually quite difficult to do the work that needs to be done in academia, since many of the resources needed to push the state of the art are only found in industry: in particular data.

Of course, academia also lacks machine resources, but this is a simpler problem to fix — it’s a matter of money, resources form the government could go to enabling research groups building their own data centers or acquiring the computational resources from the market, e.g. Amazon. This is aided by the compute philanthropy that Google and Microsoft practice that grant compute cycles to academic organizations.

But the data problem is much harder to address. The data being collected and generated at private companies could enable amazing discoveries and research, but is impossible for academics to access. The lack of access to private data from companies actually is much more significant effects than inhibiting research. In particular, the consumer level data, collected by social networks and internet companies could do much more than ad targeting.

Just for public health — suicide prevention, addiction counseling, mental health monitoring — there is enormous potential in the use of our online behavior to aid the most needy, and academia and non-profits are set-up to enable this work, while companies are not.

To give a one examples, anorexia and eating disorders are vicious killers. 20 million women and 10 million men suffer from a clinically significant eating disorder at some time in their life, and sufferers of eating disorders have the highest mortality rate of any other mental health disorder — with a jaw-dropping estimated mortality rate of 10%, both directly from injuries sustained by the disorder and by suicide resulting from the disorder.

Eating disorders are particular in that sufferers often seek out confirmatory information, blogs, images and pictures that glorify and validate what sufferers see as “lifestyle” choices. Browsing behavior that seeks out images and guidance on how to starve yourself is a key indicator that someone is suffering. Tumblr, pinterest, instagram are places that people host and seek out this information. Tumblr has tried to help address this severe mental health issue by banning blogs that advocate for self-harm and by adding PSA announcements to query term searches for queries for or related to anorexia. But clearly — this is not the be all and end all of work that could be done to detect and assist people at risk of dying from eating disorders. Moreover, this data could also help understand the nature of those disorders themselves…..

There is probably a role for a data ombudsman within private organizations — someone to protect the interests of the public’s data inside of an organization. Like a ‘public editor’ in a newspaper according to how you’ve set it up. There to protect and articulate the interests of the public, which means probably both sides — making sure a company’s data is used for public good where appropriate, and making sure the ‘right’ to privacy of the public is appropriately safeguarded (and probably making sure the public is informed when their data is compromised).

Next, we need a platform to make collaboration around social good between companies and between companies and academics. This platform would enable trusted users to have access to a wide variety of data, and speed process of research.

Finally, I wonder if there is a way that government could support research sabbaticals inside of companies. Clearly, the opportunities for this research far outstrip what is currently being done…(more)”

Foundation Transparency: Game Over?


Brad Smith at Glass Pockets (Foundation Center): “The tranquil world of America’s foundations is about to be shaken, but if you read the Center for Effective Philanthropy’s (CEP) new study — Sharing What Matters, Foundation Transparency — you would never know it.

Don’t get me wrong. That study, like everything CEP produces, is carefully researched, insightful and thoroughly professional. But it misses the single biggest change in foundation transparency in decades: the imminent release by the Internal Revenue Service of foundation 990-PF (and 990) tax returns as machine-readable open data.

Clara Miller, President of the Heron Foundation, writes eloquently in her manifesto, Building a Foundation for the 21St Century: “…the private foundation model was designed to be protective and separate, much like a terrarium.”

Terrariums, of course, are highly “curated” environments over which their creators have complete control. The CEP study, proves that point, to the extent that much of the study consists of interviews with foundation leaders and reviews of their websites as if transparency were a kind of optional endeavor in which foundations may choose to participate, if at all, and to what degree.

To be fair, CEP also interviewed the grantees of various foundations (sometimes referred to as “partners”), which helps convey the reality that foundations have stakeholders beyond their four walls. However, the terrarium metaphor is about to become far more relevant as the release of 990 tax returns as open data will literally make it possible for anyone to look right through those glass walls to the curated foundation world within.

What Is Open Data?

It is safe to say that most foundation leaders and a fair majority of their staff do not understand what open data really is. Open data is free, yes, but more importantly it is digital and machine-readable. This means it can be consumed in enormous volumes at lightning speed, directly by computers.

Once consumed, open data can be tagged, sorted, indexed and searched using statistical methods to make obvious comparisons while discovering previously undetected correlations. Anyone with a computer, some coding skills and a hard drive or cloud storage can access open data. In today’s world, a lot of people meet those requirements, and they are free to do whatever they please with your information once it is, as open data enthusiasts like to say, “in the wild.”

What is the Internal Revenue Service Releasing?

Thanks to the Aspen Institute’s leadership of a joint effort – funded by foundations and including Foundation Center, GuideStar, the National Center for Charitable Statistics, the Johns Hopkins Center for Civil Society Studies, and others – the IRS has started to make some 1,000,000 Form 990s and 40,000 Form 990PF available as machine-readable open data.

Previously, all Form 990s had been released as image (TIFF) files, essentially a picture, making it both time-consuming and expensive to extract useful data from them. Credit where credit is due; a kick in the butt in the form of a lawsuit from open data crusader Carl Malamud helped speed the process along.

The current test phase includes only those tax returns that were digitally filed by nonprofits and community foundations (990s) and private foundations (990PFs). Over time, the IRS will phase in a mandatory digital filing requirement for all Form 990s, and the intent is to release them all as open data. In other words, that which is born digital will be opened up to the public in digital form. Because of variations in the 990 forms, getting the information from them into a database will still require some technical expertise, but will be far more feasible and faster than ever before.

The Good

The work of organizations like Foundation Center– who have built expensive infrastructure in order to turn years of 990 tax returns into information that can be used by nonprofits looking for funding, researchers trying to understand the role of foundations and foundations, themselves, seeking to benchmark themselves against peers—will be transformed.

Work will shift away from the mechanics of capturing and processing the data to higher level analysis and visualization to stimulate the generation and sharing of new insights and knowledge. This will fuel greater collaboration between peer organizations, innovation, the merging of previous disparate bodies of data, better philanthropy, and a stronger social sector… (more)

 

Legal Aid With a Digital Twist


Tina Rosenberg in the New York Times: “Matthew Stubenberg was a law student at the University of Maryland in 2010 when he spent part of a day doing expungements. It was a standard law school clinic where students learn by helping clients — in this case, he helped them to fill out and file petitions to erase parts of their criminal records. (Last week I wrote about the lifelong effects of these records, even if there is no conviction, and the expungement process that makes them go away.)

Although Maryland has a public database called Case Search, using that data to fill out the forms was tedious. “We spent all this time moving data from Case Search onto our forms,” Stubenberg said. “We spent maybe 30 seconds on the legal piece. Why could this not be easier? This was a problem that could be fixed by a computer.”

Stubenberg knew how to code. After law school, he set out to build software that automatically did that tedious work. By September 2014 he had a prototype for MDExpungement, which went live in January 2015. (The website is not pretty — Stubenberg is a programmer, not a designer.)

With MDExpungement, entering a case number brings it up on Case Search. The software then determines whether the case is expungeable. If so, the program automatically transfers the information from Case Search to the expungement form. All that’s left is to print, sign and file it with the court.

In October 2015 a change in Maryland law made more cases eligible for expungement. Between then and March 2016, people filed 7,600 petitions to have their criminal records removed in Baltimore City District Court. More than two-thirds of them came from MDExpungement.

“With the ever-increasing amount of expungements we’re all doing, the app has just made it a lot easier,” said Mary-Denise Davis, a public defender in Baltimore. “I put in a case number and it fills the form out for me. Like magic.”

The rise of online legal forms may not be a gripping subject, but it matters. Tens of millions of Americans need legal help for civil problems — they need a divorce, child support or visitation, protection from abuse or a stay of eviction. They must hold off debt collectors or foreclosure, or get government benefits….(more)

Could a tweet or a text increase college enrollment or student achievement?


 at the Conversation: “Can a few text messages, a timely email or a letter increase college enrollment and student achievement? Such “nudges,” designed carefully using behavioral economics, can be effective.

But when do they work – and when not?

Barriers to success

Consider students who have just graduated high school intending to enroll in college. Even among those who have been accepted to college, 15 percent of low-income students do not enroll by the next fall. For the large share who intend to enroll in community colleges, this number can be as high as 40 percent….

Can a few text messages or a timely email overcome these barriers? My research uses behavioral economics to design low-cost, scalable interventions aimed at improving education outcomes. Behavioral economics suggests several important features to make a nudge effective: simplify complex information, make tasks easier to complete and ensure that support is timely.

So, what makes for an effective nudge?

Improving college enrollment

In 2012, researchers Ben Castleman and Lindsay Page sent 10 text messages to nearly 2,000 college-intending students the summer after high school graduation. These messages provided just-in-time reminders on key financial aid, housing and enrollment deadlines from early July to mid August.

Instead of set meetings with counselors, students could reply to messages and receive on-demand support from college guidance counselors to complete key tasks.

In another intervention – the Expanding College Opportunities Project (ECO) – researchers Caroline Hoxby and Sarah Turner worked to help high-achieving, low-income students enroll in colleges on par with their achievement. The intervention arrived to students as a packet in the mail.

The mailer simplified information by providing a list of colleges tailored to each student’s location along with information about net costs, graduation rates, and application deadlines. Moreover, the mailer included easy-to-claim application fee waivers. All these features reduced both the complexity and cost in applying to a wider range of colleges.

In both cases, researchers found that it significantly improved college outcomes. College enrollment went up by 15 percent in the intervention designed to reduce summer melt for community college students. The ECO project increased the likelihood of admission to a selective college by 78 percent.

When there is no impact

While these interventions are promising, there are important caveats.

For instance, our preliminary findings from ongoing research show that information alone may not be enough. We sent emails and letters to more than one hundred thousand college applicants about financial aid and education-related tax benefits. However, we didn’t provide any additional support to help families through the process of claiming these benefits.

In other words, we didn’t provide any support to complete the tasks – no fee waivers, no connection to guidance counselors – just the email and the letter. Without this support to answer questions or help families complete forms to claim the benefits, we found no impact, even when students opened the emails.

More generally, “nudges” often lead to modest impacts and should be considered only a part of the solution. But there’s a dearth of low-cost, scalable interventions in education, and behavioral economics can help.

Identifying the crucial decision points – when applications are due, forms need to be filled out or school choices are made – and supplying the just-in-time support to families is key….(More).”

Robot Regulators Could Eliminate Human Error


 in the San Francisco Chronicle and Regblog: “Long a fixture of science fiction, artificial intelligence is now part of our daily lives, even if we do not realize it. Through the use of sophisticated machine learning algorithms, for example, computers now work to filter out spam messages automatically from our email. Algorithms also identify us by our photos on Facebook, match us with new friends on online dating sites, and suggest movies to watch on Netflix.

These uses of artificial intelligence hardly seem very troublesome. But should we worry if government agencies start to use machine learning?

Complaints abound even today about the uncaring “bureaucratic machinery” of government. Yet seeing how machine learning is starting to replace jobs in the private sector, we can easily fathom a literal machinery of government in which decisions made by human public servants increasingly become made by machines.

Technologists warn of an impending “singularity,” when artificial intelligence surpasses human intelligence. Entrepreneur Elon Musk cautions that artificial intelligence poses one of our “biggest existential threats.” Renowned physicist Stephen Hawking eerily forecasts that artificial intelligence might even “spell the end of the human race.”

Are we ready for a world of regulation by robot? Such a world is closer than we think—and it could actually be worth welcoming.

Already government agencies rely on machine learning for a variety of routine functions. The Postal Service uses learning algorithms to sort mail, and cities such as Los Angeles use them to time their traffic lights. But while uses like these seem relatively benign, consider that machine learning could also be used to make more consequential decisions. Disability claims might one day be processed automatically with the aid of artificial intelligence. Licenses could be awarded to airplane pilots based on what kinds of safety risks complex algorithms predict each applicant poses.

Learning algorithms are already being explored by the Environmental Protection Agency to help make regulatory decisions about what toxic chemicals to control. Faced with tens of thousands of new chemicals that could potentially be harmful to human health, federal regulators have supported the development of a program to prioritize which of the many chemicals in production should undergo the more in-depth testing. By some estimates, machine learning could save the EPA up to $980,000 per toxic chemical positively identified.

It’s not hard then to imagine a day in which even more regulatory decisions are automated. Researchers have shown that machine learning can lead to better outcomes when determining whether parolees ought to be released or domestic violence orders should be imposed. Could the imposition of regulatory fines one day be determined by a computer instead of a human inspector or judge? Quite possibly so, and this would be a good thing if machine learning could improve accuracy, eliminate bias and prejudice, and reduce human error, all while saving money.

But can we trust a government that bungled the initial rollout of Healthcare.gov to deploy artificial intelligence responsibly? In some circumstances we should….(More)”

Big Risks, Big Opportunities: the Intersection of Big Data and Civil Rights


Latest White House report on Big Data charts pathways for fairness and opportunity but also cautions against re-encoding bias and discrimination into algorithmic systems: ” Advertisements tailored to reflect previous purchasing decisions; targeted job postings based on your degree and social networks; reams of data informing predictions around college admissions and financial aid. Need a loan? There’s an app for that.

As technology advances and our economic, social, and civic lives become increasingly digital, we are faced with ethical questions of great consequence. Big data and associated technologies create enormous new opportunities to revisit assumptions and instead make data-driven decisions. Properly harnessed, big data can be a tool for overcoming longstanding bias and rooting out discrimination.

The era of big data is also full of risk. The algorithmic systems that turn data into information are not infallible—they rely on the imperfect inputs, logic, probability, and people who design them. Predictors of success can become barriers to entry; careful marketing can be rooted in stereotype. Without deliberate care, these innovations can easily hardwire discrimination, reinforce bias, and mask opportunity.

Because technological innovation presents both great opportunity and great risk, the White House has released several reports on “big data” intended to prompt conversation and advance these important issues. The topics of previous reports on data analytics included privacy, prices in the marketplace, and consumer protection laws. Today, we are announcing the latest report on big data, one centered on algorithmic systems, opportunity, and civil rights.

The first big data report warned of “the potential of encoding discrimination in automated decisions”—that is, discrimination may “be the inadvertent outcome of the way big data technologies are structured and used.” A commitment to understanding these risks and harnessing technology for good prompted us to specifically examine the intersection between big data and civil rights.

Using case studies on credit lending, employment, higher education, and criminal justice, the report we are releasing today illustrates how big data techniques can be used to detect bias and prevent discrimination. It also demonstrates the risks involved, particularly how technologies can deliberately or inadvertently perpetuate, exacerbate, or mask discrimination.

The purpose of the report is not to offer remedies to the issues it raises, but rather to identify these issues and prompt conversation, research—and action—among technologists, academics, policy makers, and citizens, alike.

The report includes a number of recommendations for advancing work in this nascent field of data and ethics. These include investing in research, broadening and diversifying technical leadership, cross-training, and expanded literacy on data discrimination, bolstering accountability, and creating standards for use within both the government and the private sector. It also calls on computer and data science programs and professionals to promote fairness and opportunity as part of an overall commitment to the responsible and ethical use of data.

Big data is here to stay; the question is how it will be used: to advance civil rights and opportunity, or to undermine them….(More)”

Citizen scientists aid Ecuador earthquake relief


Mark Zastrow at Nature: “After a magnitude-7.8 earthquake struck Ecuador’s Pacific coast on 16 April, a new ally joined the international relief effort: a citizen-science network called Zooniverse.

On 25 April, Zooniverse launched a website that asks volunteers to analyse rapidly-snapped satellite imagery of the disaster, which led to more than 650 reported deaths and 16,000 injuries. The aim is to help relief workers on the ground to find the most heavily damaged regions and identify which roads are passable.

Several crisis-mapping programmes with thousands of volunteers already exist — but it can take days to train satellites on the damaged region and to transmit data to humanitarian organizations, and results have not always proven useful. The Ecuador quake marked the first live public test for an effort dubbed the Planetary Response Network (PRN), which promises to be both more nimble than previous efforts, and to use more rigorous machine-learning algorithms to evaluate the quality of crowd-sourced analyses.

The network relies on imagery from the satellite company Planet Labs in San Francisco, California, which uses an array of shoebox-sized satellites to map the planet. In order to speed up the crowd-sourced process, it uses the Zooniverse platform to distribute the tasks of spotting features in satellite images. Machine-learning algorithms employed by a team at the University of Oxford, UK, then classify the reliability of each volunteer’s analysis and weight their contributions accordingly.

Rapid-fire data

Within 2 hours of the Ecuador test project going live with a first set of 1,300 images, each photo had been checked at least 20 times. “It was one of the fastest responses I’ve seen,” says Brooke Simmons, an astronomer at the University of California, San Diego, who leads the image processing. Steven Reece, who heads the Oxford team’s machine-learning effort, says that results — a “heat map” of damage with possible road blockages — were ready in another two hours.

In all, more than 2,800 Zooniverse users contributed to analysing roughly 25,000 square kilometres of imagery centred around the coastal cities of Pedernales and Bahia de Caraquez. That is where the London-based relief organization Rescue Global — which requested the analysis the day after the earthquake — currently has relief teams on the ground, including search dogs and medical units….(More)”

Using Data to Help People in Distress Get Help Faster


Nicole Wallace in The Chronicle of Philanthropy: “Answering text messages to a crisis hotline is different from handling customer-service calls: You don’t want counselors to answer folks in the order their messages were received. You want them to take the people in greatest distress first.

Crisis Text Line, a charity that provides counseling by text message, uses sophisticated data analysis to predict how serious the conversations are likely to be and ranks them by severity. Using an algorithm to automate triage ensures that people in crisis get help fast — with an unexpected side benefit for other texters contacting the hotline: shorter wait times.

When the nonprofit started in 2013, deciding which messages to take first was much more old-school. Counselors had to read all the messages in the queue and make a gut-level decision on which person was most in need of help.

“It was slow,” says Bob Filbin, the organization’s chief data scientist.

To solve the problem, Mr. Filbin and his colleagues used past messages to the hotline to create an algorithm that analyzes the language used in incoming messages and ranks them in order of predicted severity.

And it’s working. Since the algorithm went live on the platform, messages it marked as severe — code orange — led to conversations that were six times more likely to include thoughts of suicide or self-harm than exchanges started by other texts that weren’t marked code orange, and nine times more likely to have resulted in the counselor contacting emergency services to intervene in a suicide attempt.

Counselors don’t even see the queue of waiting texts anymore. They just click a button marked “Help Another Texter,” and the system connects them to the person whose message has been marked most urgent….(More)”