Data Publics: Urban Protest, Analytics and the Courts


Article by Anthony McCosker and Timothy Graham in MC Journal: “There are many examples globally of the use of social media to engage publics in battles over urban development or similar issues (e.g. Fredericks and Foth). Some have asked how social media might be better used by neighborhood organisations to mobilise protest and save historic buildings, cultural landmarks or urban sites (Johnson and Halegoua). And we can only note here the wealth of research literature on social movements, protest and social media. To emphasise Gerbaudo’s point, drawing on Mattoni, we “need to account for how exactly the use of these media reshapes the ‘repertoire of communication’ of contemporary movements and affects the experience of participants” (2). For us, this also means better understanding the role that social data plays in both aiding and reshaping urban protest or arming third sector groups with evidence useful in social institutions such as the courts.

New modes of digital engagement enable forms of distributed digital citizenship, which Meikle sees as the creative political relationships that form through exercising rights and responsibilities. Associated with these practices is the transition from sanctioned, simple discursive forms of social protest in petitions, to new indicators of social engagement in more nuanced social media data and the more interactive forms of online petition platforms like change.org or GetUp (Halpin et al.). These technical forms code publics in specific ways that have implications for contemporary protest action. That is, they provide the operational systems and instructions that shape social actions and relationships for protest purposes (McCosker and Milne).

All protest and social movements are underwritten by explicit or implicit concepts of participatory publics as these are shaped, enhanced, or threatened by communication technologies. But participatory protest publics are uneven, and as Kelty asks: “What about all the people who are neither protesters nor Twitter users? In the broadest possible sense this ‘General Public’ cannot be said to exist as an actual entity, but only as a kind of virtual entity” (27). Kelty is pointing to the porous boundary between a general public and an organised public, or formal enterprise, as a reminder that we cannot take for granted representations of a public, or the public as a given, in relation to Like or follower data for instance.

If carefully gauged, the concept of data publics can be useful. To start with, the notions of publics and publicness are notoriously slippery. Baym and boyd explore the differences between these two terms, and the way social media reconfigures what “public” is. Does a Comment or a Like on a Facebook Page connect an individual sufficiently to an issues-public? As far back as the 1930s, John Dewey was seeking a pragmatic approach to similar questions regarding human association and the pluralistic space of “the public”. For Dewey, “the machine age has so enormously expanded, multiplied, intensified and complicated the scope of the indirect consequences [of human association] that the resultant public cannot identify itself” (157). To what extent, then, can we use data to constitute a public in relation to social protest in the age of data analytics?

There are numerous well formulated approaches to studying publics in relation to social media and social networks. Social network analysis (SNA) determines publics, or communities, through links, ties and clustering, by measuring and mapping those connections and to an extent assuming that they constitute some form of sociality. Networked publics (Ito, 6) are understood as an outcome of social media platforms and practices in the use of new digital media authoring and distribution tools or platforms and the particular actions, relationships or modes of communication they afford, to use James Gibson’s sense of that term. “Publics can be reactors, (re)makers and (re)distributors, engaging in shared culture and knowledge through discourse and social exchange as well as through acts of media reception” (Ito 6). Hashtags, for example, facilitate connectivity and visibility and aid in the formation and “coordination of ad hoc issue publics” (Bruns and Burgess 3). Gray et al., following Ruppert, argue that “data publics are constituted by dynamic, heterogeneous arrangements of actors mobilised around data infrastructures, sometimes figuring as part of them, sometimes emerging as their effect”. The individuals of data publics are neither subjugated by the logics and metrics of digital platforms and data structures, nor simply sovereign agents empowered by the expressive potential of aggregated data (Gray et al.).

Data publics are more than just aggregates of individual data points or connections. They are inherently unstable, dynamic (despite static analysis and visualisations), or vibrant, and ephemeral. We emphasise three key elements of active data publics. First, to be more than an aggregate of individual items, a data public needs to be consequential (in Dewey’s sense of issues or problem-oriented). Second, sufficient connection is visible over time. Third, affective or emotional activity is apparent in relation to events that lend coherence to the public and its prevailing sentiment. To these, we add critical attention to the affordising processes – or the deliberate and incidental effects of datafication and analysis, in the capacities for data collection and processing in order to produce particular analytical outcomes, and the data literacies these require. We return to the latter after elaborating on the Save the Palace case….(More)”.

Countries Can Learn from France’s Plan for Public Interest Data and AI


Nick Wallace at the Center for Data Innovation: “French President Emmanuel Macron recently endorsed a national AI strategy that includes plans for the French state to make public and private sector datasets available for reuse by others in applications of artificial intelligence (AI) that serve the public interest, such as for healthcare or environmental protection. Although this strategy fails to set out how the French government should promote widespread use of AI throughout the economy, it will nevertheless give a boost to AI in some areas, particularly public services. Furthermore, the plan for promoting the wider reuse of datasets, particularly in areas where the government already calls most of the shots, is a practical idea that other countries should consider as they develop their own comprehensive AI strategies.

The French strategy, drafted by mathematician and Member of Parliament Cédric Villani, calls for legislation to mandate repurposing both public and private sector data, including personal data, to enable public-interest uses of AI by government or others, depending on the sensitivity of the data. For example, public health services could use data generated by Internet of Things (IoT) devices to help doctors better treat and diagnose patients. Researchers could use data captured by motorway CCTV to train driverless cars. Energy distributors could manage peaks and troughs in demand using data from smart meters.

Repurposed data held by private companies could be made publicly available, shared with other companies, or processed securely by the public sector, depending on the extent to which sharing the data presents privacy risks or undermines competition. The report suggests that the government would not require companies to share data publicly when doing so would impact legitimate business interests, nor would it require that any personal data be made public. Instead, Dr. Villani argues that, if wider data sharing would do unreasonable damage to a company’s commercial interests, it may be appropriate to only give public authorities access to the data. But where the stakes are lower, companies could be required to share the data more widely, to maximize reuse. Villani rightly argues that it is virtually impossible to come up with generalizable rules for how data should be shared that would work across all sectors. Instead, he argues for a sector-specific approach to determining how and when data should be shared.

After making the case for state-mandated repurposing of data, the report goes on to highlight four key sectors as priorities: health, transport, the environment, and defense. Since these all have clear implications for the public interest, France can create national laws authorizing extensive repurposing of personal data without violating the General Data Protection Regulation (GDPR) which allows national laws that permit the repurposing of personal data where it serves the public interest. The French strategy is the first clear effort by an EU member state to proactively use this clause in aid of national efforts to bolster AI….(More)”.

Buzzwords and tortuous impact studies won’t fix a broken aid system


The Guardian: “Fifteen leading economists, including three Nobel winners, argue that the many billions of dollars spent on aid can do little to alleviate poverty while we fail to tackle its root causes….Donors increasingly want to see more impact for their money, practitioners are searching for ways to make their projects more effective, and politicians want more financial accountability behind aid budgets. One popular option has been to audit projects for results. The argument is that assessing “aid effectiveness” – a buzzword now ubiquitous in the UK’s Department for International Development – will help decide what to focus on.

Some go so far as to insist that development interventions should be subjected to the same kind of randomised control trials used in medicine, with “treatment” groups assessed against control groups. Such trials are being rolled out to evaluate the impact of a wide variety of projects – everything from water purification tablets to microcredit schemes, financial literacy classes to teachers’ performance bonuses.

Economist Esther Duflo at MIT’s Poverty Action Lab recently argued in Le Monde that France should adopt clinical trials as a guiding principle for its aid budget, which has grown significantly under the Macron administration.

But truly random sampling with blinded subjects is almost impossible in human communities without creating scenarios so abstract as to tell us little about the real world. And trials are expensive to carry out, and fraught with ethical challenges – especially when it comes to health-related interventions. (Who gets the treatment and who doesn’t?)

But the real problem with the “aid effectiveness” craze is that it narrows our focus down to micro-interventions at a local level that yield results that can be observed in the short term. At first glance this approach might seem reasonable and even beguiling. But it tends to ignore the broader macroeconomic, political and institutional drivers of impoverishment and underdevelopment. Aid projects might yield satisfying micro-results, but they generally do little to change the systems that produce the problems in the first place. What we need instead is to tackle the real root causes of poverty, inequality and climate change….(More)”.

Technology, Activism, and Social Justice in a Digital Age


Book edited by John G. McNutt: “…offers a close look at both the present nature and future prospects for social change. In particular, the text explores the cutting edge of technology and social change, while discussing developments in social media, civic technology, and leaderless organizations — as well as more traditional approaches to social change.

It effectively assembles a rich variety of perspectives to the issue of technology and social change; the featured authors are academics and practitioners (representing both new voices and experienced researchers) who share a common devotion to a future that is just, fair, and supportive of human potential.

They come from the fields of social work, public administration, journalism, law, philanthropy, urban affairs, planning, and education, and their work builds upon 30-plus years of research. The authors’ efforts to examine changing nature of social change organizations and the issues they face will help readers reflect upon modern advocacy, social change, and the potential to utilize technology in making a difference….(More)”

How Charities Are Using Artificial Intelligence to Boost Impact


Nicole Wallace at the Chronicle of Philanthropy: “The chaos and confusion of conflict often separate family members fleeing for safety. The nonprofit Refunite uses advanced technology to help loved ones reconnect, sometimes across continents and after years of separation.

Refugees register with the service by providing basic information — their name, age, birthplace, clan and subclan, and so forth — along with similar facts about the people they’re trying to find. Powerful algorithms search for possible matches among the more than 1.1 million individuals in the Refunite system. The analytics are further refined using the more than 2,000 searches that the refugees themselves do daily.

The goal: find loved ones or those connected to them who might help in the hunt. Since Refunite introduced the first version of the system in 2010, it has helped more than 40,000 people reconnect.

One factor complicating the work: Cultures define family lineage differently. Refunite co-founder Christopher Mikkelsen confronted this problem when he asked a boy in a refugee camp if he knew where his mother was. “He asked me, ‘Well, what mother do you mean?’ ” Mikkelsen remembers. “And I went, ‘Uh-huh, this is going to be challenging.’ ”

Fortunately, artificial intelligence is well suited to learn and recognize different family patterns. But the technology struggles with some simple things like distinguishing the image of a chicken from that of a car. Mikkelsen believes refugees in camps could offset this weakness by tagging photographs — “car” or “not car” — to help train algorithms. Such work could earn them badly needed cash: The group hopes to set up a system that pays refugees for doing such work.

“To an American, earning $4 a day just isn’t viable as a living,” Mikkelsen says. “But to the global poor, getting an access point to earning this is revolutionizing.”

Another group, Wild Me, a nonprofit created by scientists and technologists, has created an open-source software platform that combines artificial intelligence and image recognition, to identify and track individual animals. Using the system, scientists can better estimate the number of endangered animals and follow them over large expanses without using invasive techniques….

To fight sex trafficking, police officers often go undercover and interact with people trying to buy sex online. Sadly, demand is high, and there are never enough officers.

Enter Seattle Against Slavery. The nonprofit’s tech-savvy volunteers created chatbots designed to disrupt sex trafficking significantly. Using input from trafficking survivors and law-enforcement agencies, the bots can conduct simultaneous conversations with hundreds of people, engaging them in multiple, drawn-out conversations, and arranging rendezvous that don’t materialize. The group hopes to frustrate buyers so much that they give up their hunt for sex online….

A Philadelphia charity is using machine learning to adapt its services to clients’ needs.

Benefits Data Trust helps people enroll for government-assistance programs like food stamps and Medicaid. Since 2005, the group has helped more than 650,000 people access $7 billion in aid.

The nonprofit has data-sharing agreements with jurisdictions to access more than 40 lists of people who likely qualify for government benefits but do not receive them. The charity contacts those who might be eligible and encourages them to call the Benefits Data Trust for help applying….(More)”.

Small Wars, Big Data: The Information Revolution in Modern Conflict


Book by Eli Berman, Joseph H. Felter & Jacob N. Shapiro: “The way wars are fought has changed starkly over the past sixty years. International military campaigns used to play out between large armies at central fronts. Today’s conflicts find major powers facing rebel insurgencies that deploy elusive methods, from improvised explosives to terrorist attacks. Small Wars, Big Datapresents a transformative understanding of these contemporary confrontations and how they should be fought. The authors show that a revolution in the study of conflict–enabled by vast data, rich qualitative evidence, and modern methods—yields new insights into terrorism, civil wars, and foreign interventions. Modern warfare is not about struggles over territory but over people; civilians—and the information they might choose to provide—can turn the tide at critical junctures.

The authors draw practical lessons from the past two decades of conflict in locations ranging from Latin America and the Middle East to Central and Southeast Asia. Building an information-centric understanding of insurgencies, the authors examine the relationships between rebels, the government, and civilians. This approach serves as a springboard for exploring other aspects of modern conflict, including the suppression of rebel activity, the role of mobile communications networks, the links between aid and violence, and why conventional military methods might provide short-term success but undermine lasting peace. Ultimately the authors show how the stronger side can almost always win the villages, but why that does not guarantee winning the war.

Small Wars, Big Data provides groundbreaking perspectives for how small wars can be better strategized and favorably won to the benefit of the local population….(More)”.

Blockchain Ethical Design Framework


Report by Cara LaPointe and Lara Fishbane: “There are dramatic predictions about the potential of blockchain to “revolutionize” everything from worldwide financial markets and the distribution of humanitarian assistance to the very way that we outright recognize human identity for billions of people around the globe. Some dismiss these claims as excessive technology hype by citing flaws in the technology or robustness of incumbent solutions and infrastructure.

The reality will likely fall somewhere between these two extremes across multiple sectors. Where initial applications of blockchain were focused on the financial industry, current applications have rapidly expanded to address a wide array of sectors with major implications for social impact.

This paper aims to demonstrate the capacity of blockchain to create scalable social impact and to identify the elements that need to be addressed to mitigate challenges in its application. We are at a moment when technology is enabling society to experiment with new solutions and business models. Ubiquity and global reach, increased capabilities, and affordability have made technology a critical tool for solving problems, making this an exciting time to think about achieving greater social impact. We can address issues for underserved or marginalized people in ways that were previously unimaginable.

Blockchain is a technology that holds real promise for dealing with key inefficiencies and transforming operations in the social sector and for improving lives. Because of its immutability and decentralization, blockchain has the potential to create transparency, provide distributed verification, and build trust across multiple systems. For instance, blockchain applications could provide the means for establishing identities for individuals without identification papers, improving access to finance and banking services for underserved populations, and distributing aid to refugees in a more transparent and efficient manner. Similarly, national and subnational governments are putting land registry information onto blockchains to create greater transparency and avoid corruption and manipulation by third parties.

From increasing access to capital, to tracking health and education data across multiple generations, to improving voter records and voting systems, blockchain has countless potential applications for social impact. As developers take on building these types of solutions, the social effects of blockchain can be powerful and lasting. With the potential for such a powerful impact, the design, application, and approach to the development and implementation of blockchain technologies have long-term implications for society and individuals.

This paper outlines why intentionality of design, which is important with any technology, is particularly crucial with blockchain, and offers a framework to guide policymakers and social impact organizations. As social media, cryptocurrencies, and algorithms have shown, technology is not neutral. Values are embedded in the code. How the problem is defined and by whom, who is building the solution, how it gets programmed and implemented, who has access, and what rules are created have consequences, in intentional and unintentional ways. In the applications and implementation of blockchain, it is critical to understand that seemingly innocuous design choices have resounding ethical implications on people’s lives.

This white paper addresses why intentionality of design matters, identifies the key questions that should be asked, and provides a framework to approach use of blockchain, especially as it relates to social impact. It examines the key attributes of blockchain, its broad applicability as well as its particular potential for social impact, and the challenges in fully realizing that potential. Social impact organizations and policymakers have an obligation to understand the ethical approaches used in designing blockchain technology, especially how they affect marginalized and vulnerable populations….(More)”

Can Smart Cities Be Equitable?


Homi Kharas and Jaana Remes at Project Syndicate: “Around the world, governments are making cities “smarter” by using data and digital technology to build more efficient and livable urban environments. This makes sense: with urban populations growing and infrastructure under strain, smart cities will be better positioned to manage rapid change.

But as digital systems become more pervasive, there is a danger that inequality will deepen unless local governments recognize that tech-driven solutions are as important to the poor as they are to the affluent.

While offline populations can benefit from applications running in the background of daily life – such as intelligent signals that help with traffic flows – they will not have access to the full range of smart-city programs. With smartphones serving as the primary interface in the modern city, closing the digital divide, and extending access to networks and devices, is a critical first step.

City planners can also deploy technology in ways that make cities more inclusive for the poor, the disabled, the elderly, and other vulnerable people. Examples are already abundant.

In New York City, the Mayor’s Public Engagement Unit uses interagency data platforms to coordinate door-to-door outreachto residents in need of assistance. In California’s Santa Clara County, predictive analytics help prioritize shelter space for the homeless. On the London Underground, an app called Wayfindr uses Bluetooth to help visually impaired travelers navigate the Tube’s twisting pathways and escalators.

And in Kolkata, India, a Dublin-based startup called Addressing the Unaddressedhas used GPS to provide postal addresses for more than 120,000 slum dwellers in 14 informal communities. The goal is to give residents a legal means of obtaining biometric identification cards, essential documentation needed to access government services and register to vote.

But while these innovations are certainly significant, they are only a fraction of what is possible.

Public health is one area where small investments in technology can bring big benefits to marginalized groups. In the developing world, preventable illnesses comprise a disproportionate share of the disease burden. When data are used to identify demographic groups with elevated risk profiles, low-cost mobile-messaging campaigns can transmit vital prevention information. So-called “m-health” interventions on issues like vaccinations, safe sex, and pre- and post-natal care have been shown to improve health outcomes and lower health-care costs.

Another area ripe for innovation is the development of technologies that directly aid the elderly….(More)”.

Can crowdsourcing scale fact-checking up, up, up? Probably not, and here’s why


Mevan Babakar at NiemanLab: “We foolishly thought that harnessing the crowd was going to require fewer human resources, when in fact it required, at least at the micro level, more.”….There’s no end to the need for fact-checking, but fact-checking teams are usually small and struggle to keep up with the demand. In recent months, organizations like WikiTribune have suggested crowdsourcing as an attractive, low-cost way that fact-checking could scale.

As the head of automated fact-checking at the U.K.’s independent fact-checking organization Full Fact, I’ve had a lot of time to think about these suggestions, and I don’t believe that crowdsourcing can solve the fact-checking bottleneck. It might even make it worse. But — as two notable attempts, TruthSquad and FactcheckEU, have shown — even if crowdsourcing can’t help scale the core business of fact checking, it could help streamline activities that take place around it.

Think of crowdsourced fact-checking as including three components: speed (how quickly the task can be done), complexity (how difficult the task is to perform; how much oversight it needs), and coverage (the number of topics or areas that can be covered). You can optimize for (at most) two of these at a time; the third has to be sacrificed.

High-profile examples of crowdsourcing like Wikipedia, Quora, and Stack Overflow harness and gather collective knowledge, and have proven that large crowds can be used in meaningful ways for complex tasks across many topics. But the tradeoff is speed.

Projects like Gender Balance (which asks users to identify the gender of politicians) and Democracy Club Candidates (which crowdsources information about election candidates) have shown that small crowds can have a big effect when it comes to simple tasks, done quickly. But the tradeoff is broad coverage.

At Full Fact, during the 2015 U.K. general election, we had 120 volunteers aid our media monitoring operation. They looked through the entire media output every day and extracted the claims being made. The tradeoff here was that the task wasn’t very complex (it didn’t need oversight, and we only had to do a few spot checks).

But we do have two examples of projects that have operated at both high levels of complexity, within short timeframes, and across broad areas: TruthSquad and FactCheckEU….(More)”.

The GovLab Selected Readings on Blockchain Technologies and the Governance of Extractives


Curation by Andrew Young, Anders Pedersen, and Stefaan G. Verhulst

Readings developed together with NRGI, within the context of our joint project on Blockchain technologies and the Governance of Extractives. Thanks to Joyce Zhang and Michelle Winowatan for research support.

We need your help! Please share any additional readings on the use of Blockchain Technologies in the Extractives Sector with blockchange@thegovlab.org.  

Introduction

By providing new ways to securely identify individuals and organizations, and record transactions of various types in a distributed manner, blockchain technologies have been heralded as a new tool to address information asymmetries, establish trust and improve governance – particularly around the extraction of oil, gas and other natural resources. At the same time, blockchain technologies are been experimented with to optimize certain parts of the extractives value chain – potentially decreasing transparency and accountability while making governance harder to implement.

Across the expansive and complex extractives sector, blockchain technologies are believed to have particular potential for improving governance in three key areas:  

  • Beneficial ownership and illicit flows screening: The identity of those who benefit, through ownership, from companies that extract natural resources is often hidden – potentially contributing to tax evasion, challenges to global sanction regimes, corruption and money laundering.
  • Land registration, licensing and contracting transparency: To ensure companies extract resources responsibly and comply with rules and fee requirements, effective governance and a process to determine who has the rights to extract natural resources, under what conditions, and who is entitled to the land is essential.
  • Commodity trading and supply chain transparency: The commodity trading sector is facing substantive challenges in assessing and verifying the authenticity of for example oil trades. Costly time is spent by commodity traders reviewing documentation of often poor quality. The expectation of the sector is firstly to eliminate time spent verifying the authenticity of traded goods and secondly to reduce the risk premium on trades. Transactions from resources and commodities trades are often opaque and secretive, allowing for governments and companies to conceal how much money they receive from trading, and leading to corruption and evasion of taxation.

In the below we provide a selection of the nascent but growing literature on Blockchain Technologies and Extractives across six categories:

Selected Readings 

Blockchain Technologies and Extractives – Promise and Current Potential

Adams, Richard, Beth Kewell, Glenn Parry. “Blockchain for Good? Digital Ledger Technology and Sustainable Development Goals.” Handbook of Sustainability and Social Science Research. October 27, 2017.

  • This chapter in the Handbook of Sustainability and Social Science Research seeks to reflect and explore the different ways Blockchain for Good (B4G) projects can provide social and environmental benefits under the UN’s Sustainable Goals framework
  • The authors describe the main categories in which blockchain can achieve social impact: mining/consensus algorithms that reward good behavior, benefits linked to currency use in the form of “colored coins,” innovations in supply chain, innovations in government, enabling the sharing economy, and fostering financial inclusion.
  • The chapter concludes that with B4G there is also inevitably “Blockchain for Bad.” There is already critique and failures of DLTs such as the DAO, and more research must be done to identify whether DLTs can provide a more decentralized, egalitarian society, or if they will ultimately be another tool for control and surveillance by organizations and government.

Cullinane, Bernadette, and Randy Wilson. “Transforming the Oil and Gas Industry through Blockchain.” Official Journal of the Australian Institute of Energy News, p 9-10, December 2017.

  • In this article, Cullinane and Wilson explore blockchain’s application in the oil and gas industry “presents a particularly compelling opportunity…due to the high transactional values, associated risks and relentless pressure to reduce costs.”
  • The authors elaborate four areas where blockchain can benefit play a role in transforming the oil and gas industry:
    • Supply chain management
    • Smart contracts
    • Record management
    • Cross-border payments

Da Silva, Filipe M., and Ankita Jaitly. “Blockchain in Natural Resources: Hedging Against Volatile Prices.” Tata Consultancy Services Ltd., 2018.

  • The authors of this white paper assess the readiness of natural resources industries for blockchain technology application, identify areas where blockchain can add value, and outline a strategic plan for its adoption.
  • In particular, they highlight the potential for blockchain in the oil and gas industry to simplify payments, where for example, gas can be delivered directly to consumer homes using a blockchain smart contracting application.

Halford-Thompson, Guy. “Powered by Blockchain: Reinventing Information Management in the Energy Space.” BTL, May 12, 2017.

  • According to Halford-Thompson, “oil and gas companies are exploring blockchain’s promise to revamp inefficient internal processes and achieve significant reductions in operating costs through the automation of record keeping and messaging, the digitization of the supply chain information flow, and the elimination of reconciliation, among many other data management use cases.”
  • The data reconciliation process, for one, is complex and can require significant time for completion. Blockchain technology could not only remove the need for some steps in the information reconciliation process, but also eliminate the need for reconciliation altogether in some instances.

Blockchain Technologies and the Governance of Extractives

(See also: Selected Readings of Blockchain Technologies and its Potential to Transform Governance)

Koeppen, Mark, David Shrier, and Morgan Bazilian. “Is Blockchain’s Future in Oil and Gas Transformative Or Transient? Deloitte, 2017.

  • In this report, the authors propose four areas that blockchain can improve for the oil and gas industry, which are:
    • Transparency and compliance: Employment of blockchain is predicted to significantly reduce cost related to compliance, since it securely makes information available to all parties involved in the supply chain.
    • Cyber threats and security: The industry faces constant digital security threat and blockchain provides a solution to address this issue.
    • Mid-volume trading/third party impacts: They argue that the “boundaries between asset classes will blur as cash, energy products and other commodities, from industrial components to apples could all become digital assets trading interoperably.”
    • Smart contract: Since the “sheer size and volume of contracts and transactions to execute capital projects in oil and gas have historically caused significant reconciliation and tracking issues among contractors, sub-contractors, and suppliers,” blockchain-enabled smart contracts could improve the process by executing automatically after all requirements are met, and boosting contract efficiency and protecting each party from volatile pricing.

Mawet, Pierre, and Michael Insogna. “Unlocking the Potential of Blockchain in Oil and Gas Supply Chains.” Accenture Energy Blog, November 21, 2016.

  • The authors propose three ways blockchain technology can boost productivity and efficiency in oil and gas industry:
    • “Greater process efficiency. Smart contracts, for example, can be held in a blockchain transaction with party compliance confirmed through follow-on transactions, reducing third-party supervision and paper-based contracting, thus helping reduce cost and overhead.”
    • “Compliance. Visibility is essential to improve supply chain performance. The immutable record of transactions can aid in product traceability and asset tracking.”
    • “Data transfer from IoT sensors. Blockchain could be used to track the unique history of a device, with the distributed ledger recording data transfer from multiple sensors. Data security in devices could be safeguarded by unique blockchain characteristics.”

Som, Indranil. “Blockchain: Radically Changing the Mining Paradigm.” Digitalist, September 27, 2017.

  • In this article, Som proposes three ways that the blockchain technology can “support leaner organizations and increased security” in the mining industry: improving cybersecurity, increasing transparency through smart contracts, and providing visibility into the supply chain.

Identity: Beneficial Ownership and Illicit Flows

(See also: Selected Readings on Blockchain Technologies and Identity).

de Jong, Julia, Alexander Meyer, and Jeffrey Owens. “Using blockchain for transparent beneficial ownership registers. International Tax Review, June 2017.

  • This paper discusses the features of blockchain and distributed ledger technology that can improve collection and distribution of information on beneficial ownership.
  • The FATF and OECD Global Forum regimes have identified a number of common problems related to beneficial ownership information across all jurisdictions, including:
    • “Insufficient accuracy and accessibility of company identification and ownership information;
    • Less rigorous implementation of customer due-diligence (CDD) measures by key gatekeepers such as lawyers, accountants, and trust and company service providers; and
    • Obstacles to information sharing such as data protection and privacy laws, which impede competent authorities from receiving timely access to adequate, accurate and up-to-date information on basic legal and beneficial ownership.”
  • The authors argue that the transparency, immutability, and security offered by blockchain makes it ideally suited for record-keeping, particularly with regards to the ownership of assets. Thus, blockchain can address many of the shortcomings in the current system as identified by the FATF and the OECD.
  • They go on to suggest that a global registry of beneficial ownership using blockchain technology would offer the following benefits:
    • Ensuring real-time accuracy and verification of ownership information
    • Increasing security and control over sensitive personal and commercial information
    • Enhancing audit transparency
    • Creating the potential for globally-linked registries
    • Reducing corruption and fraud, and increasing trust
    • Reducing compliance burden for regulate entities

Herian, Robert. “Trusteeship in a Post-Trust World: Property, Trusts Law and the Blockchain.” The Open University, 2016.

  • This working paper discusses the often overlooked topic of trusteeship and trusts law and the implications of blockchain technology in the space. 
  • “Smart trusts” on the blockchain will distribute trusteeship across a network and, in theory, remove the need for continuous human intervention in trust fund investments thus resolving key issues around accountability and the potential for any breach of trust.
  • Smart trusts can also increase efficiency and security of transactions, which could improve the overall performance of the investment strategy, thereby creating higher returns for beneficiaries.

Karsten, Jack and Darrell M. West (2018): “Venezuela’s “petro” undermines other cryptocurrencies – and international sanctions.” Brookings, Friday, March 9 2018,

  • This article discusses the Venezuelan government’s cryptocurrency, “petro,” which was launched as a solution to the country’s economic crisis and near-worthless currency, “bolívar”
  • Unlike the volatility of other cryptocurrencies such as Bitcoin and Litecoin, one petro’s price is pegged to the price of one barrel of Venezuelan oil – roughly $60
  • And rather than decentralizing control like most blockchain applications, the petro is subject to arbitrary discount factor adjustment, fluctuating oil prices, and a corrupt government known for manipulating its currency
  • The authors warn the petro will not stabilize the Venezuelan economy since only foreign investors funded the presale, yet (from the White Paper) only Venezuelan citizens can use the cryptocurrency to pay taxes, fees, and other expenses. Rather, they argue, the petro represents an attempt to create foreign capital out of “thin air,” which is not subject to traditional economic sanctions.  

Land Registration, Licensing and Contracting Transparency

Michael Graglia and Christopher Mellon. “Blockchain and Property in 2018: At the End of the Beginning.” 2018 World Bank Conference on Land and Poverty, March 19-23, 2018.

  • This paper claims “blockchain makes sense for real estate” because real estate transactions depend on a number of relationships, processes, and intermediaries that must reconcile all transactions and documents for an action to occur. Blockchain and smart contracts can reduce the time and cost of transactions while ensuring secure and transparent record-keeping systems.
  • The ease, efficiency, and security of transactions can also create an “international market for small real estate” in which individuals who cannot afford an entire plot of land can invest small amounts and receive their portion of rental payments automatically through smart contracts.
  • The authors describe seven prerequisites that land registries must fulfill before blockchain can be introduced successfully: accurate data, digitized records, an identity solution, multi-sig wallets, a private or hybrid blockchain, connectivity and a tech aware population, and a trained professional community
  • To achieve the goal of an efficient and secure property registry, the authors propose an 8-level progressive framework through which registries slowly integrate blockchain due to legal complexity of land administration, resulting inertia of existing processes, and high implementation costs.  
    • Level 0 – No Integration
    • Level 1 – Blockchain Recording
    • Level 2 – Smart Workflow
    • Level 3 – Smart Escrow
    • Level 4 – Blockchain Registry
    • Level 5 – Disaggregated Rights
    • Level 6 – Fractional Rights
    • Level 7 – Peer-to-Peer Transactions
    • Level 8 – Interoperability

Thomas, Rod. “Blockchain’s Incompatibility for Use as a Land Registry: Issues of Definition, Feasibility and Risk. European Property Law Journal, vol. 6, no. 3, May 2017.

  • Thomas argues that blockchain, as it is currently understood and defined, is unsuited for the transfer of real property rights because it fails to address the need for independent verification and control.
  • Under a blockchain-based system, coin holders would be in complete control of the recordation of the title interests of their land, and thus, it would be unlikely that they would report competing or contested claims.
  • Since land remains in the public domain, the risk of third party possessory title claims are likely to occur; and over time, these risks will only increase exponentially.
  • A blockchain-based land title represents interlinking and sequential transactions over many hundreds, if not thousands, of years, so given the misinformation that would compound over time, it would be difficult to trust the current title holder has a correctly recorded title
  • The author concludes that supporters of blockchain for land registries frequently overlook a registry’s primary function to provide an independent verification of the provenance of stored data.

Vos, Jacob, Christiaan Lemmen, and Bert Beentjes. “Blockchain-Based Land Registry: Panacea, Illusion or Something In Between? 2017 World Bank Conference on Land and Poverty, March 20-24, 2017.

  • The authors propose that blockchain is best suited for the following steps in land administration:
    • The issuance of titles
    • The archiving of transactions – specifically in countries that do not have a reliable electronic system of transfer of ownership
  • The step in between issuing titles and archiving transactions is the most complex – the registration of the transaction. This step includes complex relationships between the “triple” of land administration: rights (right in rem and/or personal rights), object (spatial unit), and subject (title holder). For the most part, this step is done manually by registrars, and it is questionable whether blockchain technology, in the form of smart contracts, will be able to process these complex transactions.
  • The authors conclude that one should not underestimate the complexity of the legal system related to land administration. The standardization of processes may be the threshold to success of blockchain-based land administration. The authors suggest instead of seeking to eliminate one party from the process, technologists should cooperate with legal and geodetic professionals to create a system of checks and balances to successfully implement blockchain for land administration.  
  • This paper also outlines five blockchain-based land administration projects launched in Ghana, Honduras, Sweden, Georgia, and Cook County, Illinois.

Commodity Trading and Supply Chain Transparency

Ahmed, Shabir. “Leveraging Blockchain to Revolutionise the Mining Industry.” SAP News, February 27, 2018.

  • In this article, Ahmed identifies seven key use cases for blockchain in the mining industry:
    • Automation of ore acquisition and transfer;
    • Automatic registration of mineral rights and IP;
    • Visibility of ore inventory at ports;
    • Automatic cargo hire process;
    • Process and secure large amounts of IoT data;
    • Reconciling amount produced and sent for processing;
    • Automatically execute procurement and other contracts.

Brooks, Michael. “Blockchain and the Fight Against Illicit Financial Flows.” The Policy Corner, February 19, 2018.

  • In this article, Brooks argues that, “Because of the inherent decentralization and immutability of data within blockchains, it offers a unique opportunity to bypass traditional tracking and transparency initiatives that require strong central governance and low levels of corruption. It could, to a significant extent, bypass the persistent issues of authority and corruption by democratizing information around data consensus, rather than official channels and occasional studies based off limited and often manipulated information. Within the framework of a coherent policy initiative that integrates all relevant stakeholders (states, transnational organizations, businesses, NGOs, other monitors and oversight bodies), a international supply chains supported by blockchain would decrease the ease with which resources can be hidden, numbers altered, and trade misinvoiced.”

Conflict Free Natural Resources.” Global Opportunity Report 2017. Global Opportunity Network, 2017.

  • In this entry from the Global Opportunity Report, and specifically toward the end of ensuring conflict-free natural resources, Blockchain is labeled as “well-suited for tracking objects and transactions, making it possible for virtually anything of value to be traced. This opportunity is about creating transparency and product traceability in supply chains.

Blockchain for Traceability in Minerals and Metals Supply Chains: Opportunities and Challenges.” RCS Global and ICMM, 2017.

  • This report is based on insights generated during the Materials Stewardship Round Table on the potential of BCTs for tracking and tracing metals and minerals supply chains, which subsequently informed an RCS Global research initiative on the topic.
  • Insight into two key areas is increasingly desired by downstream manufacturing companies from upstream producers of metals and minerals: provenance and production methods
  • In particular, the report offers five key potential advantages of using Blockchain for mineral and metal supply chain activities:
    • “Builds consensus and trust around responsible production standards between downstream and upstream companies.
    • The immutability of and decentralized control over a blockchain system minimizes the risk of fraud.
    • Defined datasets can be made accessible in real time to any third party, including downstream buyers, auditors, investors, etc. but at the same time encrypted so as to share a proof of fact rather than confidential information.
    • A blockchain system can be easily scaled to include other producers and supply chains beyond those initially involved.
    • Cost reduction due to the paperless nature of a blockchain-enabled CoC [Chain of Custody] system, the potential reduction of audits, and reduction in transaction costs.”

Van Bockstael, Steve. “The emergence of conflict-free, ethical, and Fair Trade mineral supply chain certification systems: A brief introduction.” The Extractives Industries and Society, vol. 5, issue 1, January 2018.

  • This introduction to a special section considers the emerging field of “‘conflict-free’, ‘fair’ and ‘transparently sourced and traded’ minerals” in global industry supply chains.
  • Van Bockstael describes three areas of practice aimed at increasing supply chain transparency:
    • “Initiatives that explicitly try to sever the links between mining or minerals trading and armed conflict of the funding thereof.”
    • “Initiatives, limited in number yet growing, that are explicitly linked to the internationally recognized ‘Fair Trade’ movement and whose aim it is to source artisanally mined minerals for the Western jewellry industry.”
    • “Initiatives that aim to provide consumers or consumer-facing industries with more ethical, transparent and fair supply chains (often using those concepts in fuzzy and interchangeable ways) that are not linked to the established Fair Trade movement” – including, among others, initiatives using Blockchain technology “to create tamper-proof supply chains.”

Global Governance, Standards and Disclosure Practices

Lafarre, Anne and Christoph Van der Elst. “Blockchain Technology for Corporate Governance and Shareholder Activism.” European Corporate Governance Institute (ECGI) – Law Working Paper No. 390/2018, March 8, 2018.

  • This working paper focuses on the potential benefits of leveraging Blockchain during functions involving shareholder and company decision making. Lafarre and Van der Elst argue that “Blockchain technology can lower shareholder voting costs and the organization costs for companies substantially. Moreover, blockchain technology can increase the speed of decision-making, facilitate fast and efficient involvement of shareholders.”
  • The authors argue that in the field of corporate governance, Blockchain offers two important elements: “transparency – via the verifiable way of recording transactions – and trust – via the immutability of these transactions.”
  • Smart contracting, in particular, is seen as a potential avenue for facilitating the ‘agency relationship’ between board members and the shareholders they represent in corporate decision-making processes.

Myung, San Jun. “Blockchain government – a next for of infrastructure for the twenty-first century.” Journal of Open Innovation: Technology, Market, and Complexity, December 2018.

  • This paper argues the idea that Blockchain represents a new form of infrastructure that, given its core consensus mechanism, could replace existing social apparatuses including bureaucracy.
  • Indeed, Myung argues that blockchain and bureaucracy share a number of attributes:
    • “First, both of them are defined by the rules and execute predetermined rules.
    • Second, both of them work as information processing machines for society.
    • Third, both of them work as trust machines for society.”  
  • The piece concludes with five principles for replacing bureaucracy with blockchain for social organization: “1) introducing Blockchain Statute law; 2) transparent disclosure of data and source code; 3) implementing autonomous executing administration; 4) building a governance system based on direct democracy; and 5) making Distributed Autonomous Government (DAG).  

Peters, Gareth and Vishnia, Guy (2016): “Blockchain Architectures for Electronic Exchange Reporting Requirements: EMIR, Dodd Frank, MiFID I/II, MiFIR, REMIT, Reg NMS and T2S.” University College London, August 31, 2016.

  • This paper offers a solution based on blockchain architectures to the regulations of financial exchanges around the world for trade processing and reporting for execution and clearing. In particular, the authors give a detailed overview of EMIR, Dodd Frank, MiFID I/II, MiFIR, REMIT, Reg NMS and T2S.
  • The authors suggest the increasing amount of data from transaction reporting start to be incorporated on a blockchain ledger in order to harness the built-in security and immutability features of the blockchain to support key regulatory features.
  • Specifically, the authors suggest 1) a permissioned blockchain controlled by a regulator or a consortium of market participants for the maintenance of identity data from market participants and 2) blockchain frameworks such as Enigma to be used to facilitate required transparency and reporting aspects related to identities when performing pre- and post-trade reporting as well as for auditing.

Blockchain Technology and Competition Policy – Issues paper by the Secretariat,” OECD, June 8, 2018.

  • This OECD issues paper poses two key questions about how blockchain technology might increase the relevance of new disclosures practices:
    • “Should competition agencies be given permission to access blockchains? This might enable them to monitor trading prices in real-time, spot suspicious trends, and, when investigating a merger, conduct or market have immediate access to the necessary data without needing to impose burdensome information requests on parties.”
    • “Similarly, easy access to the information on a blockchain for a firm’s owners and head offices would potentially improve the effectiveness of its oversight on its own subsidiaries and foreign holdings. Competition agencies may assume such oversight already exists, but by making it easier and cheaper, a blockchain might make it more effective, which might allow for more effective centralised compliance programmes.”

Michael Pisa and Matt Juden. “Blockchain and Economic Development: Hype vs. Reality.” Center for Global Development Policy Paper, 2017.

  • In this Center for Global Development Policy Paper, the authors examine blockchain’s potential to address four major development challenges: (1) facilitating faster and cheaper international payments, (2) providing a secure digital infrastructure for verifying identity, (3) securing property rights, and (4) making aid disbursement more secure and transparent.
  • The authors conclude that while blockchain may be well suited for certain use cases, the majority of constraints in blockchain-based projects fall outside the scope of technology. Common constraints such as data collection and privacy, governance, and operational resiliency must be addressed before blockchain can be successfully implemented as a solution.

Industry-Specific Case Studies

Chohan, Usman. “Blockchain and the Extractive Industries: Cobalt Case Study,” University of New South Wales, Canberra Discussion Paper Series: Notes on the 21st Century, 2018.

  • In this discussion paper, the author studies the pilot use of blockchain in cobalt mining industry in the Democratic Republic of Congo (DRC). The project tracked the movement of cobalt from artisanal mines through its installation in devices such as smartphones and electric cars.
  • The project records cobalt attributes – weights, dates, times, images, etc. – into the digital ledger to help ensure that cobalt purchases are not contributing to forced child labor or conflict minerals. 

Chohan, Usman. “Blockchain and the Extractive Industries #2: Diamonds Case Study,” University of New South Wales, Canberra Discussion Paper Series: Notes on the 21st Century, 2018.

  • The second case study from Chohan investigates the application of blockchain technology in the extractive industry by studying Anglo-American (AAL) diamond DeBeer’s unit and Everledger’s blockchain projects. 
  • In this study, the author finds that AAL uses blockchain to track gems (carat, color, certificate numbers), starting from extraction and onwards, including when the gems change hands in trade transaction.
  • Like the cobalt pilot, the AAL initiative aims to help avoid supporting conflicts and forced labor, and to improve trading accountability and transparency more generally.