Advancing Environmental Justice with AI


Article by Justina Nixon-Saintil: “Given its capacity to innovate climate solutions, the technology sector could provide the tools we need to understand, mitigate, and even reverse the damaging effects of global warming. In fact, addressing longstanding environmental injustices requires these companies to put the newest and most effective technologies into the hands of those on the front lines of the climate crisis.

Tools that harness the power of artificial intelligence, in particular, could offer unprecedented access to accurate information and prediction, enabling communities to learn from and adapt to climate challenges in real time. The IBM Sustainability Accelerator, which we launched in 2022, is at the forefront of this effort, supporting the development and scaling of projects such as the Deltares Aquality App, an AI-powered tool that helps farmers assess and improve water quality. As a result, farmers can grow crops more sustainably, prevent runoff pollution, and protect biodiversity.

Consider also the challenges that smallholder farmers face, such as rising costs, the difficulty of competing with larger producers that have better tools and technology, and, of course, the devastating effects of climate change on biodiversity and weather patterns. Accurate information, especially about soil conditions and water availability, can help them address these issues, but has historically been hard to obtain…(More)”.

AI and new standards promise to make scientific data more useful by making it reusable and accessible


Article by Bradley Wade Bishop: “…AI makes it highly desirable for any data to be machine-actionable – that is, usable by machines without human intervention. Now, scholars can consider machines not only as tools but also as potential autonomous data reusers and collaborators.

The key to machine-actionable data is metadata. Metadata are the descriptions scientists set for their data and may include elements such as creator, date, coverage and subject. Minimal metadata is minimally useful, but correct and complete standardized metadata makes data more useful for both people and machines.

It takes a cadre of research data managers and librarians to make machine-actionable data a reality. These information professionals work to facilitate communication between scientists and systems by ensuring the quality, completeness and consistency of shared data.

The FAIR data principles, created by a group of researchers called FORCE11 in 2016 and used across the world, provide guidance on how to enable data reuse by machines and humans. FAIR data is findable, accessible, interoperable and reusable – meaning it has robust and complete metadata.

In the past, I’ve studied how scientists discover and reuse data. I found that scientists tend to use mental shortcuts when they’re looking for data – for example, they may go back to familiar and trusted sources or search for certain key terms they’ve used before. Ideally, my team could build this decision-making process of experts and remove as many biases as possible to improve AI. The automation of these mental shortcuts should reduce the time-consuming chore of locating the right data…(More)”.

How Will the State Think With the Assistance of ChatGPT? The Case of Customs as an Example of Generative Artificial Intelligence in Public Administrations


Paper by Thomas Cantens: “…discusses the implications of Generative Artificial Intelligence (GAI) in public administrations and the specific questions it raises compared to specialized and « numerical » AI, based on the example of Customs and the experience of the World Customs Organization in the field of AI and data strategy implementation in Member countries.

At the organizational level, the advantages of GAI include cost reduction through internalization of tasks, uniformity and correctness of administrative language, access to broad knowledge, and potential paradigm shifts in fraud detection. At this level, the paper highlights three facts that distinguish GAI from specialized AI : i) GAI is less associated to decision-making process than specialized AI in public administrations so far, ii) the risks usually associated with GAI are often similar to those previously associated with specialized AI, but, while certain risks remain pertinent, others lose significance due to the constraints imposed by the inherent limitations of GAI technology itself when implemented in public administrations, iii) training data corpus for GAI becomes a strategic asset for public administrations, maybe more than the algorithms themselves, which was not the case for specialized AI.

At the individual level, the paper emphasizes the “language-centric” nature of GAI in contrast to “number-centric” AI systems implemented within public administrations up until now. It discusses the risks of replacement or enslavement of civil servants to the machines by exploring the transformative impact of GAI on the intellectual production of the State. The paper pleads for the development of critical vigilance and critical thinking as specific skills for civil servants who are highly specialized and will have to think with the assistance of a machine that is eclectic by nature…(More)”.

Unleashing possibilities, ignoring risks: Why we need tools to manage AI’s impact on jobs


Article by Katya Klinova and Anton Korinek: “…Predicting the effects of a new technology on labor demand is difficult and involves significant uncertainty. Some would argue that, given the uncertainty, we should let the “invisible hand” of the market decide our technological destiny. But we believe that the difficulty of answering the question “Who is going to benefit and who is going to lose out?” should not serve as an excuse for never posing the question in the first place. As we emphasized, the incentives for cutting labor costs are artificially inflated. Moreover, the invisible hand theorem does not hold for technological change. Therefore, a failure to investigate the distribution of benefits and costs of AI risks invites a future with too many “so-so” uses of AI—uses that concentrate gains while distributing the costs. Although predictions about the downstream impacts of AI systems will always involve some uncertainty, they are nonetheless useful to spot applications of AI that pose the greatest risks to labor early on and to channel the potential of AI where society needs it the most.

In today’s society, the labor market serves as a primary mechanism for distributing income as well as for providing people with a sense of meaning, community, and purpose. It has been documented that job loss can lead to regional decline, a rise in “deaths of despair,” addiction and mental health problems. The path that we lay out aims to prevent abrupt job losses or declines in job quality on the national and global scale, providing an additional tool for managing the pace and shape of AI-driven labor market transformation.

Nonetheless, we do not want to rule out the possibility that humanity may eventually be much happier in a world where machines do a lot more economically valuable work. Even despite our best efforts to manage the pace and shape of AI labor market disruption through regulation and worker-centric practices, we may still face a future with significantly reduced human labor demand. Should the demand for human labor decrease permanently with the advancement of AI, timely policy responses will be needed to address both the lost incomes as well as the lost sense of meaning and purpose. In the absence of significant efforts to distribute the gains from advanced AI more broadly, the possible devaluation of human labor would deeply impact income distribution and democratic institutions’ sustainability. While a jobless future is not guaranteed, its mere possibility and the resulting potential societal repercussions demand serious consideration. One promising proposal to consider is to create an insurance policy against a dramatic decrease in the demand for human labor that automatically kicks in if the share of income received by workers declines, for example a “seed” Universal Basic Income that starts at a very small level and remains unchanged if workers continue to prosper but automatically rises if there is large scale worker displacement…(More)”.

The Age of Prediction: Algorithms, AI, and the Shifting Shadows of Risk


Book by Igor Tulchinsky and Christopher E. Mason: “… about two powerful, and symbiotic, trends: the rapid development and use of artificial intelligence and big data to enhance prediction, as well as the often paradoxical effects of these better predictions on our understanding of risk and the ways we live. Beginning with dramatic advances in quantitative investing and precision medicine, this book explores how predictive technology is quietly reshaping our world in fundamental ways, from crime fighting and warfare to monitoring individual health and elections.

As prediction grows more robust, it also alters the nature of the accompanying risk, setting up unintended and unexpected consequences. The Age of Prediction details how predictive certainties can bring about complacency or even an increase in risks—genomic analysis might lead to unhealthier lifestyles or a GPS might encourage less attentive driving. With greater predictability also comes a degree of mystery, and the authors ask how narrower risks might affect markets, insurance, or risk tolerance generally. Can we ever reduce risk to zero? Should we even try? This book lays an intriguing groundwork for answering these fundamental questions and maps out the latest tools and technologies that power these projections into the future, sometimes using novel, cross-disciplinary tools to map out cancer growth, people’s medical risks, and stock dynamics…(More)”.

Do People Like Algorithms? A Research Strategy


Paper by Cass R. Sunstein and Lucia Reisch: “Do people like algorithms? In this study, intended as a promissory note and a description of a research strategy, we offer the following highly preliminary findings. (1) In a simple choice between a human being and an algorithm, across diverse settings and without information about the human being or the algorithm, people in our tested groups are about equally divided in their preference. (2) When people are given a very brief account of the data on which an algorithm relies, there is a large shift in favor of the algorithm over the human being. (3) When people are given a very brief account of the experience of the relevant human being, without an account of the data on which the relevant algorithm relies, there is a moderate shift in favor of the human being. (4) When people are given both (a) a very brief account of the experience of the relevant human being and (b) a very brief account of the data on which the relevant algorithm relies, there is a large shift in favor of the algorithm over the human being. One lesson is that in the tested groups, at least one-third of people seem to have a clear preference for either a human being or an algorithm – a preference that is unaffected by brief information that seems to favor one or the other. Another lesson is that a brief account of the data on which an algorithm relies does have a significant effect on a large percentage of the tested groups, whether or not people are also given positive information about the human alternative. Across the various surveys, we do not find persistent demographic differences, with one exception: men appear to like algorithms more than women do. These initial findings are meant as proof of concept, or more accurately as a suggestion of concept, intended to inform a series of larger and more systematic studies of whether and when people prefer to rely on algorithms or human beings, and also of international and demographic differences…(More)”.

The Legal Singularity


Book by Abdi Aidid and Benjamin Alarie: “…argue that the proliferation of artificial intelligence–enabled technology – and specifically the advent of legal prediction – is on the verge of radically reconfiguring the law, our institutions, and our society for the better.

Revealing the ways in which our legal institutions underperform and are expensive to administer, the book highlights the negative social consequences associated with our legal status quo. Given the infirmities of the current state of the law and our legal institutions, the silver lining is that there is ample room for improvement. With concerted action, technology can help us to ameliorate the problems of the law and improve our legal institutions. Inspired in part by the concept of the “technological singularity,” The Legal Singularity presents a future state in which technology facilitates the functional “completeness” of law, where the law is at once extraordinarily more complex in its specification than it is today, and yet operationally, the law is vastly more knowable, fairer, and clearer for its subjects. Aidid and Alarie describe the changes that will culminate in the legal singularity and explore the implications for the law and its institutions…(More)”.

What if You Knew What You Were Missing on Social Media?


Article by Julia Angwin: “Social media can feel like a giant newsstand, with more choices than any newsstand ever. It contains news not only from journalism outlets, but also from your grandma, your friends, celebrities and people in countries you have never visited. It is a bountiful feast.

But so often you don’t get to pick from the buffet. On most social media platforms, algorithms use your behavior to narrow in on the posts you are shown. If you send a celebrity’s post to a friend but breeze past your grandma’s, it may display more posts like the celebrity’s in your feed. Even when you choose which accounts to follow, the algorithm still decides which posts to show you and which to bury.

There are a lot of problems with this model. There is the possibility of being trapped in filter bubbles, where we see only news that confirms our existing beliefs. There are rabbit holes, where algorithms can push people toward more extreme content. And there are engagement-driven algorithms that often reward content that is outrageous or horrifying.

Yet not one of those problems is as damaging as the problem of who controls the algorithms. Never has the power to control public discourse been so completely in the hands of a few profit-seeking corporations with no requirements to serve the public good.

Elon Musk’s takeover of Twitter, which he renamed X, has shown what can happen when an individual pushes a political agenda by controlling a social media company.

Since Mr. Musk bought the platform, he has repeatedly declared that he wants to defeat the “woke mind virus” — which he has struggled to define but largely seems to mean Democratic and progressive policies. He has reinstated accounts that were banned because of the white supremacist and antisemitic views they espoused. He has banned journalists and activists. He has promoted far-right figures such as Tucker Carlson and Andrew Tate, who were kicked off other platforms. He has changed the rules so that users can pay to have some posts boosted by the algorithm, and has purportedly changed the algorithm to boost his own posts. The result, as Charlie Warzel said in The Atlantic, is that the platform is now a “far-right social network” that “advances the interests, prejudices and conspiracy theories of the right wing of American politics.”

The Twitter takeover has been a public reckoning with algorithmic control, but any tech company could do something similar. To prevent those who would hijack algorithms for power, we need a pro-choice movement for algorithms. We, the users, should be able to decide what we read at the newsstand…(More)”.

An AI Model Tested In The Ukraine War Is Helping Assess Damage From The Hawaii Wildfires


Article by Irene Benedicto: “On August 7, 2023, the day before the Maui wildfires started in Hawaii, a constellation of earth-observing satellites took multiple pictures of the island at noon, local time. Everything was quiet, still. The next day, at the same, the same satellites captured images of fires consuming the island. Planet, a San Francisco-based company that owns the largest fleet of satellites taking pictures of the Earth daily, provided this raw imagery to Microsoft engineers, who used it to train an AI model designed to analyze the impact of disasters. Comparing before and after the fire photographs, the AI model created maps that highlighted the most devastated areas of the island.

With this information, the Red Cross rearranged its work on the field that same day to respond to the most urgent priorities first, helping evacuate thousands of people who’ve been affected by one of the deadliest fires in over a century. The Hawaii wildfires have already killed over a hundred people, a hundred more remain missing and at least 11,000 people have been displaced. The relief efforts are ongoing 10 days after the start of the fire, which burned over 3,200 acres. Hawaii Governor Josh Green estimated the recovery efforts could cost $6 billion.

Planet and Microsoft AI were able to pull and analyze the satellite imagery so quickly because they’d struggled to do so the last time they deployed their system: during the Ukraine war. The successful response in Maui is the result of a year and a half of building a new AI tool that corrected fundamental flaws in the previous system, which didn’t accurately recognize collapsed buildings in a background of concrete.

“When Ukraine happened, all the AI models failed miserably,” Juan Lavista, chief scientist at Microsoft AI, told Forbes.

The problem was that the company’s previous AI models were mainly trained with natural disasters in the U.S. and Africa. But devastation doesn’t look the same when it is caused by war and in an Eastern European city. “We learned that having one single model that would adapt to every single place on earth was likely impossible,” Lavista said…(More)”.

Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril


Special Publication by the National Academy of Medicine (NAM): “The emergence of artificial intelligence (AI) in health care offers unprecedented opportunities to improve patient and clinical team outcomes, reduce costs, and impact population health. While there have been a number of promising examples of AI applications in health care, it is imperative to proceed with caution or risk the potential of user disillusionment, another AI winter, or further exacerbation of existing health- and technology-driven disparities.

This Special Publication synthesizes current knowledge to offer a reference document for relevant health care stakeholders. It outlines the current and near-term AI solutions; highlights the challenges, limitations, and best practices for AI development, adoption, and maintenance; offers an overview of the legal and regulatory landscape for AI tools designed for health care application; prioritizes the need for equity, inclusion, and a human rights lens for this work; and outlines key considerations for moving forward.

AI is poised to make transformative and disruptive advances in health care, but it is prudent to balance the need for thoughtful, inclusive health care AI that plans for and actively manages and reduces potential unintended consequences, while not yielding to marketing hype and profit motives…(More)”