Four Principles for Integrating AI & Good Governance


Oxford Commission on AI and Good Governance: “Many governments, public agencies and institutions already employ AI in providing public services, the distribution of resources and the delivery of governance goods. In the public sector, AI-enabled governance may afford new efficiencies that have the potential to transform a wide array of public service tasks.
But short-sighted design and use of AI can create new problems, entrench existing inequalities, and calcify and ultimately undermine government organizations.

Frameworks for the procurement and implementation of AI in public service have widely remained undeveloped. Frequently, existing regulations and national laws are no longer fit for purpose to ensure
good behaviour (of either AI or private suppliers) and are ill-equipped to provide guidance on the democratic use of AI.
As technology evolves rapidly, we need rules to guide the use of AI in ways that safeguard democratic values. Under what conditions can AI be put into service for good governance?

We offer a framework for integrating AI with good governance. We believe that with dedicated attention and evidence-based policy research, it should be possible to overcome the combined technical and organizational challenges of successfully integrating AI with good governance. Doing so requires working towards:


Inclusive Design: issues around discrimination and bias of AI in relation to inadequate data sets, exclusion of minorities and under-represented
groups, and the lack of diversity in design.
Informed Procurement: issues around the acquisition and development in relation to due diligence, design and usability specifications and the assessment of risks and benefits.
Purposeful Implementation: issues around the use of AI in relation to interoperability, training needs for public servants, and integration with decision-making processes.
Persistent Accountability: issues around the accountability and transparency of AI in relation to ‘black box’ algorithms, the interpretability and explainability of systems, monitoring and auditing…(More)”

Indigenous Protocol and Artificial Intelligence


Indigenous Protocol and Artificial Intelligence Working Group: “This position paper on Indigenous Protocol (IP) and Artificial Intelligence (AI) is a starting place for those who want to design and create AI from an ethical position that centers Indigenous concerns. Each Indigenous community will have its own particular approach to the questions we raise in what follows. What we have written here is not a substitute for establishing and maintaining relationships of reciprocal care and support with specific Indigenous communities. Rather, this document offers a range of ideas to take into consideration when entering into conversations which prioritize Indigenous perspectives in the development of artificial intelligence.

The position paper is an attempt to capture multiple layers of a discussion that happened over 20 months, across 20 time zones, during two workshops, and between Indigenous people (and a few non-Indigenous folks) from diverse communities in Aotearoa, Australia, North America, and the Pacific.

Our aim, however, is not to provide a unified voice. Indigenous ways of knowing are rooted in distinct, sovereign territories across the planet. These extremely diverse landscapes and histories have influenced different communities and their discrete cultural protocols over time. A single ‘Indigenous perspective’ does not exist, as epistemologies are motivated and shaped by the grounding of specific communities in particular territories. Historically, scholarly traditions that homogenize diverse Indigenous cultural practices have resulted in ontological and epistemological violence, and a flattening of the rich texture and variability of Indigenous thought….(More)”.

Turning Point Policymaking in the Era of Artificial Intelligence


Book by Darrell M. West and John R. Allen: “Until recently, “artificial intelligence” sounded like something out of science fiction. But the technology of artificial intelligence, AI, is becoming increasingly common, from self-driving cars to e-commerce algorithms that seem to know what you want to buy before you do. Throughout the economy and many aspects of daily life, artificial intelligence has become the transformative technology of our time.

Despite its current and potential benefits, AI is little understood by the larger public and widely feared. The rapid growth of artificial intelligence has given rise to concerns that hidden technology will create a dystopian world of increased income inequality, a total lack of privacy, and perhaps a broad threat to humanity itself.

In their compelling and readable book, two experts at Brookings discuss both the opportunities and risks posed by artificial intelligence—and how near-term policy decisions could determine whether the technology leads to utopia or dystopia.

Drawing on in-depth studies of major uses of AI, the authors detail how the technology actually works. They outline a policy and governance blueprint for gaining the benefits of artificial intelligence while minimizing its potential downsides.

The book offers major recommendations for actions that governments, businesses, and individuals can take to promote trustworthy and responsible artificial intelligence. Their recommendations include: creation of ethical principles, strengthening government oversight, defining corporate culpability, establishment of advisory boards at federal agencies, using third-party audits to reduce biases inherent in algorithms, tightening personal privacy requirements, using insurance to mitigate exposure to AI risks, broadening decision-making about AI uses and procedures, penalizing malicious uses of new technologies, and taking pro-active steps to address how artificial intelligence affects the workforce….(More)”.

Ethical and societal implications of algorithms, data, and artificial intelligence: a roadmap for research


Report by the Nuffield Foundation and the Leverhulme Centre for the Future of Intelligence:” The aim of this report is to offer a broad roadmap for work on the ethical and societal implications of algorithms, data, and AI (ADA) in the coming years. It is aimed at those involved in planning, funding, and pursuing research and policy work related to these technologies. We use the term ‘ADA-based technologies’ to capture a broad range of ethically and societally relevant technologies based on algorithms, data, and AI, recognising that these three concepts are not totally separable from one another and will often overlap. A shared set of key concepts and concerns is emerging, with widespread agreement on some of the core issues (such as bias) and values (such as fairness) that an ethics of algorithms, data, and AI should focus on. Over the last two years, these have begun to be codified in various codes and sets of ‘principles’. Agreeing on these issues, values and high-level principles is an important step for ensuring that ADA-based technologies are developed and used for the benefit of society. However, we see three main gaps in this existing work: (i) a lack of clarity or consensus around the meaning of central ethical concepts and how they apply in specific situations; (ii) insufficient attention given to tensions between ideals and values; (iii) insufficient evidence on both (a) key technological capabilities and impacts, and (b) the perspectives of different publics.”….(More)”.

New mathematical idea reins in AI bias towards making unethical and costly commercial choices


The University of Warwick: “Researchers from the University of Warwick, Imperial College London, EPFL (Lausanne) and Sciteb Ltd have found a mathematical means of helping regulators and business manage and police Artificial Intelligence systems’ biases towards making unethical, and potentially very costly and damaging commercial choices—an ethical eye on AI.

Artificial intelligence (AI) is increasingly deployed in commercial situations. Consider for example using AI to set prices of insurance products to be sold to a particular customer. There are legitimate reasons for setting different prices for different people, but it may also be profitable to ‘game’ their psychology or willingness to shop around.

The AI has a vast number of potential strategies to choose from, but some are unethical and will incur not just moral cost but a significant potential economic penalty as stakeholders will apply some penalty if they find that such a strategy has been used—regulators may levy significant fines of billions of Dollars, Pounds or Euros and customers may boycott you—or both.

So in an environment in which decisions are increasingly made without human intervention, there is therefore a very strong incentive to know under what circumstances AI systems might adopt an unethical strategy and reduce that risk or eliminate entirely if possible.

Mathematicians and statisticians from University of Warwick, Imperial, EPFL and Sciteb Ltd have come together to help business and regulators creating a new “Unethical Optimization Principle” and provide a simple formula to estimate its impact. They have laid out the full details in a paper bearing the name “An unethical optimization principle“, published in Royal Society Open Science on Wednesday 1st July 2020….(More)”.

Regulating Electronic Means to Fight the Spread of COVID-19


In Custodia Legis Library of Congress: “It appears that COVID-19 will not go away any time soon. As there is currently no known cure or vaccine against it, countries have to find other ways to prevent and mitigate the spread of this infectious disease. Many countries have turned to electronic measures to provide general information and advice on COVID-19, allow people to check symptoms, trace contacts and alert people who have been in proximity to an infected person, identify “hot spots,” and track compliance with confinement measures and stay-at-home orders.

The Global Legal Research Directorate (GLRD) of the Law Library of Congress recently completed research on the kind of electronic measures countries around the globe are employing to fight the spread of COVID-19 and their potential privacy and data protection implications. We are excited to share with you the report that resulted from this research, Regulating Electronic Means to Fight the Spread of COVID-19. The report covers 23 selected jurisdictions, namely ArgentinaAustraliaBrazilChinaEnglandFranceIcelandIndiaIranIsraelItalyJapanMexicoNorwayPortugalthe Russian FederationSouth AfricaSouth KoreaSpainTaiwanTurkeythe United Arab Emirates, and the European Union (EU).

The surveys found that dedicated coronavirus apps that are downloaded to an individual’s mobile phone (particularly contact tracing apps), the use of anonymized mobility data, and creating electronic databases were the most common electronic measures. Whereas the EU recommends the use of voluntary apps because of the “high degree of intrusiveness” of mandatory apps, some countries take a different approach and require installing an app for people who enter the country from abroad, people who return to work, or people who are ordered to quarantine.

However, these electronic measures also raise privacy and data protection concerns, in particular as they relate to sensitive health data. The surveys discuss the different approaches countries have taken to ensure compliance with privacy and data protection regulations, such as conducting rights impact assessments before the measures were deployed or having data protection agencies conduct an assessment after deployment.

The map below shows which jurisdictions have adopted COVID-19 contact tracing apps and the technologies they use.

Map shows COVID-19 contact tracing apps in selected jurisdictions. Created by Susan Taylor, Law Library of Congress, based on surveys in “Regulating Electronic Means to Fight the Spread of COVID-19” (Law Library of Congress, June 2020). This map does not cover other COVID-19 apps that use GPS/geolocation….(More)”.

AI+1: Shaping Our Integrated Future


Report edited by the Rockefeller Foundation: “As we speak—and browse, and post photos, and move about—artificial intelligence is transforming the fabric of our lives. It is making life easier, better informed, healthier, more convenient. It also threatens to crimp our freedoms, worsen social disparities, and gives inordinate powers to unseen forces.

Both AI’s virtues and risks have been on vivid display during this moment of global turmoil, forcing a deeper conversation around its responsible use and, more importantly, the rules and regulations needed to harness its power for good.

This is a vastly complex subject, with no easy conclusions. With no roadmap, however, we risk creating more problems instead of solving meaningful ones.

Last fall The Rockefeller Foundation convened a unique group of thinkers and doers at its Bellagio Center in Italy to weigh one of the great challenges of our time: How to harness the powers of machine learning for social good and minimize its harms. The resulting AI + 1 report includes diverse perspectives from top technologists, philosophers, economists, and artists at a critical moment during the current Covid-19 pandemic.

The report’s authors present a mix of skepticism and hope centered on three themes:

  1. AI is more than a technology. It reflects the values in its system, suggesting that any ethical lapses simply mirror our own deficiencies. And yet, there’s hope: AI can also inspire us, augment us, and make us go deeper.
  2. AI’s goals need to be society’s goals. As opposed to the market-driven, profit-making ones that dominate its use today, applying AI responsibly is to use it to support systems that have human goals.
  3. We need a new rule-making system to guide its responsible development. Self-regulation simply isn’t enough. Cross-sector oversight must start with transparency and access to meaningful information, as well as an ability to expose harm.

AI itself is a slippery force, hard to pin down and define, much less regulate. We describe it using imprecise metaphors and deepen our understanding of it through nuanced conversation. This collection of essays provokes the kind of thoughtful consideration that will help us wrestle with AI’s complexity, develop a common language, create bridges between sectors and communities, and build practical solutions. We hope that you join us….(More)”.

The AI Powered State: What can we learn from China’s approach to public sector innovation?


Essay collection edited by Nesta: “China is striding ahead of the rest of the world in terms of its investment in artificial intelligence (AI), rate of experimentation and adoption, and breadth of applications. In 2017, China announced its aim of becoming the world leader in AI technology by 2030. AI innovation is now a key national priority, with central and local government spending on AI estimated to be in the tens of billions of dollars.

While Europe and the US are also following AI strategies designed to transform the public sector, there has been surprisingly little analysis of what practical lessons can be learnt from China’s use of AI in public services. Given China’s rapid progress in this area, it is important for the rest of the world to pay attention to developments in China if it wants to keep pace.

This essay collection finds that examining China’s experience of public sector innovation offers valuable insights for policymakers. Not everything is applicable to a western context – there are social, political and ethical concerns that arise from China’s use of new technologies in public services and governance – but there is still much that can be learned from its experience while also acknowledging what should be criticized and avoided….(More)”.

Opportunities of Artificial Intelligence


Report for the European Parliament: “A vast range of AI applications are being implemented by European industry, which can be broadly grouped into two categories: i) applications that enhance the performance and efficiency of processes through mechanisms such as intelligent monitoring, optimisation and control; and ii) applications that enhance human-machine collaboration.

At present, such applications are being implemented across a broad range of European industrial sectors. However, some sectors (e.g. automotive, telecommunications, healthcare) are more advanced in AI deployment than others (e.g. paper and pulp, pumps, chemicals). The types of AI applications
implemented also differ across industries. In less digitally mature sectors, clear barriers to adoption have been identified, including both internal (e.g. cultural resistance, lack of skills, financial considerations) and external (e.g. lack of venture capital) barriers. For the most part, and especially for SMEs, barriers to the adoption of AI are similar to those hindering digitalisation. The adoption of such AI applications is anticipated to deliver a wide range of positive impacts, for individual firms, across value chains, as well as at the societal and macroeconomic levels. AI applications can bring efficiency, environmental and economic benefits related to increased production output and quality, reduced maintenance costs, improved energy efficiency, better use of raw materials and reduced waste. In addition, AI applications can add value through product personalisation, improve customer service and contribute to the development of new product classes, business models and even sectors. Workforce benefits (e.g. improved workplace safety) are also being delivered by AI applications.

Alongside these firm-level benefits and opportunities, significant positive societal and economy-wide impacts are envisaged. More specifically, substantial increases in productivity, innovation, growth and job creation have been forecasted. For example, one estimate anticipates labour productivity increases of 11-37% by 2035. In addition, AI is expected to positively contribute to the UN Sustainable Development Goals and the capabilities of AI and machine learning to address major health challenges, such as the current COVID-19 health pandemic, are also noteworthy. For instance, AI systems have the potential to accelerate the lead times for the development of vaccines and drugs.

However, AI adoption brings a range of challenges…(More)”.

Wrongfully Accused by an Algorithm


Kashmir Hill at the New York Times: “In what may be the first known case of its kind, a faulty facial recognition match led to a Michigan man’s arrest for a crime he did not commit….

The Shinola shoplifting occurred in October 2018. Katherine Johnston, an investigator at Mackinac Partners, a loss prevention firm, reviewed the store’s surveillance video and sent a copy to the Detroit police, according to their report.

Five months later, in March 2019, Jennifer Coulson, a digital image examiner for the Michigan State Police, uploaded a “probe image” — a still from the video, showing the man in the Cardinals cap — to the state’s facial recognition database. The system would have mapped the man’s face and searched for similar ones in a collection of 49 million photos.

The state’s technology is supplied for $5.5 million by a company called DataWorks Plus. Founded in South Carolina in 2000, the company first offered mug shot management software, said Todd Pastorini, a general manager. In 2005, the firm began to expand the product, adding face recognition tools developed by outside vendors.

When one of these subcontractors develops an algorithm for recognizing faces, DataWorks attempts to judge its effectiveness by running searches using low-quality images of individuals it knows are present in a system. “We’ve tested a lot of garbage out there,” Mr. Pastorini said. These checks, he added, are not “scientific” — DataWorks does not formally measure the systems’ accuracy or bias.

“We’ve become a pseudo-expert in the technology,” Mr. Pastorini said.

In Michigan, the DataWorks software used by the state police incorporates components developed by the Japanese tech giant NEC and by Rank One Computing, based in Colorado, according to Mr. Pastorini and a state police spokeswoman. In 2019, algorithms from both companies were included in a federal study of over 100 facial recognition systems that found they were biased, falsely identifying African-American and Asian faces 10 times to 100 times more than Caucasian faces….(More)“.