Access to Algorithms


Paper by Hannah Bloch-Wehba: “Federal, state, and local governments increasingly depend on automated systems — often procured from the private sector — to make key decisions about civil rights and civil liberties. When individuals affected by these decisions seek access to information about the algorithmic methodologies that produced them, governments frequently assert that this information is proprietary and cannot be disclosed. 

Recognizing that opaque algorithmic governance poses a threat to civil rights and liberties, scholars have called for a renewed focus on transparency and accountability for automated decision making. But scholars have neglected a critical avenue for promoting public accountability and transparency for automated decision making: the law of access to government records and proceedings. This Article fills this gap in the literature, recognizing that the Freedom of Information Act, its state equivalents, and the First Amendment provide unappreciated legal support for algorithmic transparency.

The law of access performs three critical functions in promoting algorithmic accountability and transparency. First, by enabling any individual to challenge algorithmic opacity in government records and proceedings, the law of access can relieve some of the burden otherwise borne by parties who are often poor and under-resourced. Second, access law calls into question government’s procurement of algorithmic decision making technologies from private vendors, subject to contracts that include sweeping protections for trade secrets and intellectual property rights. Finally, the law of access can promote an urgently needed public debate on algorithmic governance in the public sector….(More)”.

Building Trust in Human Centric Artificial Intelligence


Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: “Artificial intelligence (AI) has the potential to transform our world for the better: it can improve healthcare, reduce energy consumption, make cars safer, and enable farmers to use water and natural resources more efficiently. AI can be used to predict environmental and climate change, improve financial risk management and provides the tools to manufacture, with less waste, products tailored to our needs. AI can also help to detect fraud and cybersecurity threats, and enables law enforcement agencies to fight crime more efficiently.

AI can benefit the whole of society and the economy. It is a strategic technology that is now being developed and used at a rapid pace across the world. Nevertheless, AI also brings with it new challenges for the future of work, and raises legal and ethical questions.

To address these challenges and make the most of the opportunities which AI offers, the Commission published a European strategy in April 2018. The strategy places people at the centre of the development of AI — human-centric AI. It is a three-pronged approach to boost the EU’s technological and industrial capacity and AI uptake across the economy, prepare for socio-economic changes, and ensure an appropriate ethical and legal framework.

To deliver on the AI strategy, the Commission developed together with Member States a coordinated plan on AI, which it presented in December 2018, to create synergies, pool data — the raw material for many AI applications — and increase joint investments. The aim is to foster cross-border cooperation and mobilise all players to increase public and private investments to at least EUR 20 billion annually over the next decade.

The Commission doubled its investments in AI in Horizon 2020 and plans to invest EUR 1 billion annually from Horizon Europe and the Digital Europe Programme, in support notably of common data spaces in health, transport and manufacturing, and large experimentation facilities such as smart hospitals and infrastructures for automated vehicles and a strategic research agenda.

To implement such a common strategic research, innovation and deployment agenda the Commission has intensified its dialogue with all relevant stakeholders from industry, research institutes and public authorities. The new Digital Europe programme will also be crucial in helping to make AI available to small and medium-size enterprises across all Member States through digital innovation hubs, strengthened testing and experimentation facilities, data spaces and training programmes.

Building on its reputation for safe and high-quality products, Europe’s ethical approach to AI strengthens citizens’ trust in the digital development and aims at building a competitive advantage for European AI companies. The purpose of this Communication is to launch a comprehensive piloting phase involving stakeholders on the widest scale in order to test the practical implementation of ethical guidance for AI development and use…(More)”.

The Wrong Kind of AI? Artificial Intelligence and the Future of Labor Demand


NBER Paper by Daron Acemoglu and Pascual Restrepo: “Artificial Intelligence is set to influence every aspect of our lives, not least the way production is organized. AI, as a technology platform, can automate tasks previously performed by labor or create new tasks and activities in which humans can be productively employed. Recent technological change has been biased towards automation, with insufficient focus on creating new tasks where labor can be productively employed. The consequences of this choice have been stagnating labor demand, declining labor share in national income, rising inequality and lower productivity growth. The current tendency is to develop AI in the direction of further automation, but this might mean missing out on the promise of the “right” kind of AI with better economic and social outcomes….(More)”.

The Automated Administrative State


Paper by Danielle Citron and Ryan Calo: “The administrative state has undergone radical change in recent decades. In the twentieth century, agencies in the United States generally relied on computers to assist human decision-makers. In the twenty-first century, computers are making agency decisions themselves. Automated systems are increasingly taking human beings out of the loop. Computers terminate Medicaid to cancer patients and deny food stamps to individuals. They identify parents believed to owe child support and initiate collection proceedings against them. Computers purge voters from the rolls and deem small businesses ineligible for federal contracts [1].

Automated systems built in the early 2000s eroded procedural safeguards at the heart of the administrative state. When government makes important decisions that affect our lives, liberty, and property, it owes us “due process”— understood as notice of, and a chance to object to, those decisions. Automated systems, however, frustrate these guarantees. Some systems like the “no-fly” list were designed and deployed in secret; others lacked record-keeping audit trails, making review of the law and facts supporting a system’s decisions impossible. Because programmers working at private contractors lacked training in the law, they distorted policy when translating it into code [2].

Some of us in the academy sounded the alarm as early as the 1990s, offering an array of mechanisms to ensure the accountability and transparency of automated administrative state [3]. Yet the same pathologies continue to plague government decision-making systems today. In some cases, these pathologies have deepened and extended. Agencies lean upon algorithms that turn our personal data into predictions, professing to reflect who we are and what we will do. The algorithms themselves increasingly rely upon techniques, such as deep learning, that are even less amenable to scrutiny than purely statistical models. Ideals of what the administrative law theorist Jerry Mashaw has called “bureaucratic justice” in the form of efficiency with a “human face” feel impossibly distant [4].

The trend toward more prevalent and less transparent automation in agency decision-making is deeply concerning. For a start, we have yet to address in any meaningful way the widening gap between the commitments of due process and the actual practices of contemporary agencies [5]. Nonetheless, agencies rush to automate (surely due to the influence and illusive promises of companies seeking lucrative contracts), trusting algorithms to tell us if criminals should receive probation, if public school teachers should be fired, or if severely disabled individuals should receive less than the maximum of state-funded nursing care [6]. Child welfare agencies conduct intrusive home inspections because some system, which no party to the interaction understands, has rated a poor mother as having a propensity for violence. The challenges of preserving due process in light of algorithmic decision-making is an area of renewed and active attention within academia, civil society, and even the courts [7].

Second, and routinely overlooked, we are applying the new affordances of artificial intelligence in precisely the wrong contexts…(More)”.

Rethink government with AI


Helen Margetts and Cosmina Dorobantu at Nature: “People produce more than 2.5 quintillion bytes of data each day. Businesses are harnessing these riches using artificial intelligence (AI) to add trillions of dollars in value to goods and services each year. Amazon dispatches items it anticipates customers will buy to regional hubs before they are purchased. Thanks to the vast extractive might of Google and Facebook, every bakery and bicycle shop is the beneficiary of personalized targeted advertising.

But governments have been slow to apply AI to hone their policies and services. The reams of data that governments collect about citizens could, in theory, be used to tailor education to the needs of each child or to fit health care to the genetics and lifestyle of each patient. They could help to predict and prevent traffic deaths, street crime or the necessity of taking children into care. Huge costs of floods, disease outbreaks and financial crises could be alleviated using state-of-the-art modelling. All of these services could become cheaper and more effective.

This dream seems rather distant. Governments have long struggled with much simpler technologies. Flagship policies that rely on information technology (IT) regularly flounder. The Affordable Care Act of former US president Barack Obama nearly crumbled in 2013 when HealthCare.gov, the website enabling Americans to enrol in health insurance plans, kept crashing. Universal Credit, the biggest reform to the UK welfare state since the 1940s, is widely regarded as a disaster because of its failure to pay claimants properly. It has also wasted £837 million (US$1.1 billion) on developing one component of its digital system that was swiftly decommissioned. Canada’s Phoenix pay system, introduced in 2016 to overhaul the federal government’s payroll process, has remunerated 62% of employees incorrectly in each fiscal year since its launch. And My Health Record, Australia’s digital health-records system, saw more than 2.5 million people opt out by the end of January this year over privacy, security and efficacy concerns — roughly 1 in 10 of those who were eligible.

Such failures matter. Technological innovation is essential for the state to maintain its position of authority in a data-intensive world. The digital realm is where citizens live and work, shop and play, meet and fight. Prices for goods are increasingly set by software. Work is mediated through online platforms such as Uber and Deliveroo. Voters receive targeted information — and disinformation — through social media.

Thus the core tasks of governments, such as enforcing regulation, setting employment rights and ensuring fair elections require an understanding of data and algorithms. Here we highlight the main priorities, drawn from our experience of working with policymakers at The Alan Turing Institute in London….(More)”.

Ethics guidelines for trustworthy AI


European Commission: “Following the publication of the draft ethics guidelines in December 2018 to which more than 500 comments were received, the independent expert group presents today their ethics guidelines for trustworthy artificial intelligence.

Trustworthy AI should respect all applicable laws and regulations, as well as a series of requirements; specific assessment lists aim to help verify the application of each of the key requirements:

  • Human agency and oversight: AI systems should enable equitable societies by supporting human agency and fundamental rights, and not decrease, limit or misguide human autonomy.
  • Robustness and safety: Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of AI systems.
  • Privacy and data governance: Citizens should have full control over their own data, while data concerning them will not be used to harm or discriminate against them.
  • Transparency: The traceability of AI systems should be ensured.
  • Diversity, non-discrimination and fairness: AI systems should consider the whole range of human abilities, skills and requirements, and ensure accessibility.
  • Societal and environmental well-being: AI systems should be used to enhance positive social change and enhance sustainability and ecological responsibility.
  • Accountability: Mechanisms should be put in place to ensure responsibility and accountability for AI systems and their outcomes.

In summer 2019, the Commission will launch a pilot phase involving a wide range of stakeholders. Already today, companies, public administrations and organisations can sign up to the European AI Alliance and receive a notification when the pilot starts.

Following the pilot phase, in early 2020, the AI expert group will review the assessment lists for the key requirements, building on the feedback received. Building on this review, the Commission will evaluate the outcome and propose any next steps….(More)”.

Platform Surveillance


Editorial by David Murakami Wood and Torin Monahan of Special Issue of Surveillance and Society: “This editorial introduces this special responsive issue on “platform surveillance.” We develop the term platform surveillance to account for the manifold and often insidious ways that digital platforms fundamentally transform social practices and relations, recasting them as surveillant exchanges whose coordination must be technologically mediated and therefore made exploitable as data. In the process, digital platforms become dominant social structures in their own right, subordinating other institutions, conjuring or sedimenting social divisions and inequalities, and setting the terms upon which individuals, organizations, and governments interact.

Emergent forms of platform capitalism portend new governmentalities, as they gradually draw existing institutions into alignment or harmonization with the logics of platform surveillance while also engendering subjectivities (e.g., the gig-economy worker) that support those logics. Because surveillance is essential to the operations of digital platforms, because it structures the forms of governance and capital that emerge, the field of surveillance studies is uniquely positioned to investigate and theorize these phenomena….(More)”.

Understanding algorithmic decision-making: Opportunities and challenges


Study by Claude Castelluccia and Daniel Le Métayer for the European Parliament: “While algorithms are hardly a recent invention, they are nevertheless increasingly involved in systems used to support decision-making. These systems, known as ‘ADS’ (algorithmic decision systems), often rely on the analysis of large amounts of personal data to infer correlations or, more generally, to derive information deemed useful to make decisions. Human intervention in the decision-making may vary, and may even be completely out of the loop in entirely automated systems. In many situations, the impact of the decision on people can be significant, such as access to credit, employment, medical treatment, or judicial sentences, among other things.

Entrusting ADS to make or to influence such decisions raises a variety of ethical, political, legal, or technical issues, where great care must be taken to analyse and address them correctly. If they are neglected, the expected benefits of these systems may be negated by a variety of different risks for individuals (discrimination, unfair practices, loss of autonomy, etc.), the economy (unfair practices, limited access to markets, etc.), and society as a whole (manipulation, threat to democracy, etc.).

This study reviews the opportunities and risks related to the use of ADS. It presents policy options to reduce the risks and explain their limitations. We sketch some options to overcome these limitations to be able to benefit from the tremendous possibilities of ADS while limiting the risks related to their use. Beyond providing an up-to date and systematic review of the situation, the study gives a precise definition of a number of key terms and an analysis of their differences to help clarify the debate. The main focus of the study is the technical aspects of ADS. However, to broaden the discussion, other legal, ethical and social dimensions are considered….(More)”.

Know-how: Big Data, AI and the peculiar dignity of tacit knowledge


Essay by Tim Rogan: “Machine learning – a kind of sub-field of artificial intelligence (AI) – is a means of training algorithms to discern empirical relationships within immense reams of data. Run a purpose-built algorithm by a pile of images of moles that might or might not be cancerous. Then show it images of diagnosed melanoma. Using analytical protocols modelled on the neurons of the human brain, in an iterative process of trial and error, the algorithm figures out how to discriminate between cancers and freckles. It can approximate its answers with a specified and steadily increasing degree of certainty, reaching levels of accuracy that surpass human specialists. Similar processes that refine algorithms to recognise or discover patterns in reams of data are now running right across the global economy: medicine, law, tax collection, marketing and research science are among the domains affected. Welcome to the future, say the economist Erik Brynjolfsson and the computer scientist Tom Mitchell: machine learning is about to transform our lives in something like the way that steam engines and then electricity did in the 19th and 20th centuries. 

Signs of this impending change can still be hard to see. Productivity statistics, for instance, remain worryingly unaffected. This lag is consistent with earlier episodes of the advent of new ‘general purpose technologies’. In past cases, technological innovation took decades to prove transformative. But ideas often move ahead of social and political change. Some of the ways in which machine learning might upend the status quo are already becoming apparent in political economy debates.

The discipline of political economy was created to make sense of a world set spinning by steam-powered and then electric industrialisation. Its central question became how best to regulate economic activity. Centralised control by government or industry, or market freedoms – which optimised outcomes? By the end of the 20th century, the answer seemed, emphatically, to be market-based order. But the advent of machine learning is reopening the state vs market debate. Which between state, firm or market is the better means of coordinating supply and demand? Old answers to that question are coming under new scrutiny. In an eye-catching paper in 2017, the economists Binbin Wang and Xiaoyan Li at Sichuan University in China argued that big data and machine learning give centralised planning a new lease of life. The notion that market coordination of supply and demand encompassed more information than any single intelligence could handle would soon be proved false by 21st-century AI.

How seriously should we take such speculations? Might machine learning bring us full-circle in the history of economic thought, to where measures of economic centralisation and control – condemned long ago as dangerous utopian schemes – return, boasting new levels of efficiency, to constitute a new orthodoxy?

A great deal turns on the status of tacit knowledge….(More)”.

How the NYPD is using machine learning to spot crime patterns


Colin Wood at StateScoop: “Civilian analysts and officers within the New York City Police Department are using a unique computational tool to spot patterns in crime data that is closing cases.

A collection of machine-learning models, which the department calls Patternizr, was first deployed in December 2016, but the department only revealed the system last month when its developers published a research paper in the Informs Journal on Applied Analytics. Drawing on 10 years of historical data about burglary, robbery and grand larceny, the tool is the first of its kind to be used by law enforcement, the developers wrote.

The NYPD hired 100 civilian analysts in 2017 to use Patternizr. It’s also available to all officers through the department’s Domain Awareness System, a citywide network of sensors, databases, devices, software and other technical infrastructure. Researchers told StateScoop the tool has generated leads on several cases that traditionally would have stretched officers’ memories and traditional evidence-gathering abilities.

Connecting similar crimes into patterns is a crucial part of gathering evidence and eventually closing in on an arrest, said Evan Levine, the NYPD’s assistant commissioner of data analytics and one of Patternizr’s developers. Taken independently, each crime in a string of crimes may not yield enough evidence to identify a perpetrator, but the work of finding patterns is slow and each officer only has a limited amount of working knowledge surrounding an incident, he said.

“The goal here is to alleviate all that kind of busywork you might have to do to find hits on a pattern,” said Alex Chohlas-Wood, a Patternizr researcher and deputy director of the Computational Policy Lab at Stanford University.

The knowledge of individual officers is limited in scope by dint of the NYPD’s organizational structure. The department divides New York into 77 precincts, and a person who commits crimes across precincts, which often have arbitrary boundaries, is often more difficult to catch because individual beat officers are typically focused on a single neighborhood.

There’s also a lot of data to sift through. In 2016 alone, about 13,000 burglaries, 15,000 robberies and 44,000 grand larcenies were reported across the five boroughs.

Levine said that last month, police used Patternizr to spot a pattern of three knife-point robberies around a Bronx subway station. It would have taken police much longer to connect those crimes manually, Levine said.

The software works by an analyst feeding it “seed” case, which is then compared against a database of hundreds of thousands of crime records that Patternizr has already processed. The tool generates a “similarity score” and returns a rank-ordered list and a map. Analysts can read a few details of each complaint before examining the seed complaint and similar complaints in a detailed side-by-side view or filtering results….(More)”.