Towards matching user mobility traces in large-scale datasets


Paper by Daniel Kondor, Behrooz Hashemian,  Yves-Alexandre de Montjoye and Carlo Ratti: “The problem of unicity and reidentifiability of records in large-scale databases has been studied in different contexts and approaches, with focus on preserving privacy or matching records from different data sources. With an increasing number of service providers nowadays routinely collecting location traces of their users on unprecedented scales, there is a pronounced interest in the possibility of matching records and datasets based on spatial trajectories. Extending previous work on reidentifiability of spatial data and trajectory matching, we present the first large-scale analysis of user matchability in real mobility datasets on realistic scales, i.e. among two datasets that consist of several million people’s mobility traces, coming from a mobile network operator and transportation smart card usage. We extract the relevant statistical properties which influence the matching process and analyze their impact on the matchability of users. We show that for individuals with typical activity in the transportation system (those making 3-4 trips per day on average), a matching algorithm based on the co-occurrence of their activities is expected to achieve a 16.8% success only after a one-week long observation of their mobility traces, and over 55% after four weeks. We show that the main determinant of matchability is the expected number of co-occurring records in the two datasets. Finally, we discuss different scenarios in terms of data collection frequency and give estimates of matchability over time. We show that with higher frequency data collection becoming more common, we can expect much higher success rates in even shorter intervals….(More)”.

We Need an FDA For Algorithms


Interview with Hannah Fry on the promise and danger of an AI world by Michael Segal:”…Why do we need an FDA for algorithms?

It used to be the case that you could just put any old colored liquid in a glass bottle and sell it as medicine and make an absolute fortune. And then not worry about whether or not it’s poisonous. We stopped that from happening because, well, for starters it’s kind of morally repugnant. But also, it harms people. We’re in that position right now with data and algorithms. You can harvest any data that you want, on anybody. You can infer any data that you like, and you can use it to manipulate them in any way that you choose. And you can roll out an algorithm that genuinely makes massive differences to people’s lives, both good and bad, without any checks and balances. To me that seems completely bonkers. So I think we need something like the FDA for algorithms. A regulatory body that can protect the intellectual property of algorithms, but at the same time ensure that the benefits to society outweigh the harms.

Why is the regulation of medicine an appropriate comparison?

If you swallow a bottle of colored liquid and then you keel over the next day, then you know for sure it was poisonous. But there are much more subtle things in pharmaceuticals that require expert analysis to be able to weigh up the benefits and the harms. To study the chemical profile of these drugs that are being sold and make sure that they actually are doing what they say they’re doing. With algorithms it’s the same thing. You can’t expect the average person in the street to study Bayesian inference or be totally well read in random forests, and have the kind of computing prowess to look up a code and analyze whether it’s doing something fairly. That’s not realistic. Simultaneously, you can’t have some code of conduct that every data science person signs up to, and agrees that they won’t tread over some lines. It has to be a government, really, that does this. It has to be government that analyzes this stuff on our behalf and makes sure that it is doing what it says it does, and in a way that doesn’t end up harming people.

How did you come to write a book about algorithms?

Back in 2011 in London, we had these really bad riots in London. I’d been working on a project with the Metropolitan Police, trying mathematically to look at how these riots had spread and to use algorithms to ask how could the police have done better. I went to go and give a talk in Berlin about this paper we’d published about our work, and they completely tore me apart. They were asking questions like, “Hang on a second, you’re creating this algorithm that has the potential to be used to suppress peaceful demonstrations in the future. How can you morally justify the work that you’re doing?” I’m kind of ashamed to say that it just hadn’t occurred to me at that point in time. Ever since, I have really thought a lot about the point that they made. And started to notice around me that other researchers in the area weren’t necessarily treating the data that they were working with, and the algorithms that they were creating, with the ethical concern they really warranted. We have this imbalance where the people who are making algorithms aren’t talking to the people who are using them. And the people who are using them aren’t talking to the people who are having decisions made about their lives by them. I wanted to write something that united those three groups….(More)”.

The Seductive Diversion of ‘Solving’ Bias in Artificial Intelligence


Blog by Julia Powles and Helen Nissenbaum: “Serious thinkers in academia and business have swarmed to the A.I. bias problem, eager to tweak and improve the data and algorithms that drive artificial intelligence. They’ve latched onto fairness as the objective, obsessing over competing constructs of the term that can be rendered in measurable, mathematical form. If the hunt for a science of computational fairness was restricted to engineers, it would be one thing. But given our contemporary exaltation and deference to technologists, it has limited the entire imagination of ethics, law, and the media as well.

There are three problems with this focus on A.I. bias. The first is that addressing bias as a computational problem obscures its root causes. Bias is a social problem, and seeking to solve it within the logic of automation is always going to be inadequate.

Second, even apparent success in tackling bias can have perverse consequences. Take the example of a facial recognition system that works poorly on women of color because of the group’s underrepresentation both in the training data and among system designers. Alleviating this problem by seeking to “equalize” representation merely co-opts designers in perfecting vast instruments of surveillance and classification.

When underlying systemic issues remain fundamentally untouched, the bias fighters simply render humans more machine readable, exposing minorities in particular to additional harms.

Third — and most dangerous and urgent of all — is the way in which the seductive controversy of A.I. bias, and the false allure of “solving” it, detracts from bigger, more pressing questions. Bias is real, but it’s also a captivating diversion.

What has been remarkably underappreciated is the key interdependence of the twin stories of A.I. inevitability and A.I. bias. Against the corporate projection of an otherwise sunny horizon of unstoppable A.I. integration, recognizing and acknowledging bias can be seen as a strategic concession — one that subdues the scale of the challenge. Bias, like job losses and safety hazards, becomes part of the grand bargain of innovation.

The reality that bias is primarily a social problem and cannot be fully solved technically becomes a strength, rather than a weakness, for the inevitability narrative. It flips the script. It absorbs and regularizes the classification practices and underlying systems of inequality perpetuated by automation, allowing relative increases in “fairness” to be claimed as victories — even if all that is being done is to slice, dice, and redistribute the makeup of those negatively affected by actuarial decision-making.

In short, the preoccupation with narrow computational puzzles distracts us from the far more important issue of the colossal asymmetry between societal cost and private gain in the rollout of automated systems. It also denies us the possibility of asking: Should we be building these systems at all?…(More)”.

Better Data for Doing Good: Responsible Use of Big Data and Artificial Intelligence


Report by the World Bank: “Describes opportunities for harnessing the value of big data and artificial intelligence (AI) for social good and how new families of AI algorithms now make it possible to obtain actionable insights automatically and at scale. Beyond internet business or commercial applications, multiple examples already exist of how big data and AI can help achieve shared development objectives, such as the 2030 Agenda for Sustainable Development and the Sustainable Development Goals (SDGs). But ethical frameworks in line with increased uptake of these new technologies remain necessary—not only concerning data privacy but also relating to the impact and consequences of using data and algorithms. Public recognition has grown concerning AI’s potential to create both opportunities for societal benefit and risks to human rights. Development calls for seizing the opportunity to shape future use as a force for good, while at the same time ensuring the technologies address inequalities and avoid widening the digital divide….(More)”.

Artificial Intelligence: Public-Private Partnerships join forces to boost AI progress in Europe


European Commission Press Release: “…the Big Data Value Association and euRobotics agreed to cooperate more in order to boost the advancement of artificial intelligence’s (AI) in Europe. Both associations want to strengthen their collaboration on AI in the future. Specifically by:

  • Working together to boost European AI, building on existing industrial and research communities and on results of the Big Data Value PPP and SPARC PPP. This to contribute to the European Commission’s ambitious approach to AI, backed up with a drastic increase investment, reaching €20 billion total public and private funding in Europe until 2020.
  • Enabling joint-pilots, for example, to accelerate the use and integration of big data, robotics and AI technologies in different sectors and society as a whole
  • Exchanging best practices and approaches from existing and future projects of the Big Data PPP and the SPARC PPP
  • Contributing to the European Digital Single Market, developing strategic roadmaps and  position papers

This Memorandum of Understanding between the PPPs follows the European Commission’s approach to AI presented in April 2018 and the Declaration of Cooperation on Artificial Intelligence signed by all 28 Member States and Norway. This Friday 7 December the Commission will present its EU coordinated plan….(More)”.

Why We Need to Audit Algorithms


James Guszcza, Iyad Rahwan, Will Bible, Manuel Cebrian and Vic Katyal at Harvard Business Review: “Algorithmic decision-making and artificial intelligence (AI) hold enormous potential and are likely to be economic blockbusters, but we worry that the hype has led many people to overlook the serious problems of introducing algorithms into business and society. Indeed, we see many succumbing to what Microsoft’s Kate Crawford calls “data fundamentalism” — the notion that massive datasets are repositories that yield reliable and objective truths, if only we can extract them using machine learning tools. A more nuanced view is needed. It is by now abundantly clear that, left unchecked, AI algorithms embedded in digital and social technologies can encode societal biasesaccelerate the spread of rumors and disinformation, amplify echo chambers of public opinion, hijack our attention, and even impair our mental wellbeing.

Ensuring that societal values are reflected in algorithms and AI technologies will require no less creativity, hard work, and innovation than developing the AI technologies themselves. We have a proposal for a good place to start: auditing. Companies have long been required to issue audited financial statements for the benefit of financial markets and other stakeholders. That’s because — like algorithms — companies’ internal operations appear as “black boxes” to those on the outside. This gives managers an informational advantage over the investing public which could be abused by unethical actors. Requiring managers to report periodically on their operations provides a check on that advantage. To bolster the trustworthiness of these reports, independent auditors are hired to provide reasonable assurance that the reports coming from the “black box” are free of material misstatement. Should we not subject societally impactful “black box” algorithms to comparable scrutiny?

Indeed, some forward thinking regulators are beginning to explore this possibility. For example, the EU’s General Data Protection Regulation (GDPR) requires that organizations be able to explain their algorithmic decisions. The city of New York recently assembled a task force to study possible biases in algorithmic decision systems. It is reasonable to anticipate that emerging regulations might be met with market pull for services involving algorithmic accountability.

So what might an algorithm auditing discipline look like? First, it should adopt a holistic perspective. Computer science and machine learning methods will be necessary, but likely not sufficient foundations for an algorithm auditing discipline. Strategic thinking, contextually informed professional judgment, communication, and the scientific method are also required.

As a result, algorithm auditing must be interdisciplinary in order for it to succeed….(More)”.

Waze-fed AI platform helps Las Vegas cut car crashes by almost 20%


Liam Tung at ZDNet: “An AI-led, road-safety pilot program between analytics firm Waycare and Nevada transportation agencies has helped reduce crashes along the busy I-15 in Las Vegas.

The Silicon Valley Waycare system uses data from connected cars, road cameras and apps like Waze to build an overview of a city’s roads and then shares that data with local authorities to improve road safety.

Waycare struck a deal with Google-owned Waze earlier this year to “enable cities to communicate back with drivers and warn of dangerous roads, hazards, and incidents ahead”. Waze’s crowdsourced data also feeds into Waycare’s traffic management system, offering more data for cities to manage traffic.

Waycare has now wrapped up a year-long pilot with the Regional Transportation Commission of Southern Nevada (RTC), Nevada Highway Patrol (NHP), and the Nevada Department of Transportation (NDOT).

RTC reports that Waycare helped the city reduce the number of primary crashes by 17 percent along the Interstate 15 Las Vegas.

Waycare’s data, as well as its predictive analytics, gave the city’s safety and traffic management agencies the ability to take preventative measures in high risk areas….(More)”.

Using Artificial Intelligence to Promote Diversity


Paul R. Daugherty, H. James Wilson, and Rumman Chowdhury at MIT Sloan Management Review:  “Artificial intelligence has had some justifiably bad press recently. Some of the worst stories have been about systems that exhibit racial or gender bias in facial recognition applications or in evaluating people for jobs, loans, or other considerations. One program was routinely recommending longer prison sentences for blacks than for whites on the basis of the flawed use of recidivism data.

But what if instead of perpetuating harmful biases, AI helped us overcome them and make fairer decisions? That could eventually result in a more diverse and inclusive world. What if, for instance, intelligent machines could help organizations recognize all worthy job candidates by avoiding the usual hidden prejudices that derail applicants who don’t look or sound like those in power or who don’t have the “right” institutions listed on their résumés? What if software programs were able to account for the inequities that have limited the access of minorities to mortgages and other loans? In other words, what if our systems were taught to ignore data about race, gender, sexual orientation, and other characteristics that aren’t relevant to the decisions at hand?

AI can do all of this — with guidance from the human experts who create, train, and refine its systems. Specifically, the people working with the technology must do a much better job of building inclusion and diversity into AI design by using the right data to train AI systems to be inclusive and thinking about gender roles and diversity when developing bots and other applications that engage with the public.

Design for Inclusion

Software development remains the province of males — only about one-quarter of computer scientists in the United States are women— and minority racial groups, including blacks and Hispanics, are underrepresented in tech work, too.  Groups like Girls Who Code and AI4ALL have been founded to help close those gaps. Girls Who Code has reached almost 90,000 girls from various backgrounds in all 50 states,5 and AI4ALL specifically targets girls in minority communities….(More)”.

Explaining Explanations in AI


Paper by Brent Mittelstadt Chris Russell and Sandra Wachter: “Recent work on interpretability in machine learning and AI has focused on the building of simplified models that approximate the true criteria used to make decisions. These models are a useful pedagogical device for teaching trained professionals how to predict what decisions will be made by the complex system, and most importantly how the system might break. However, when considering any such model it’s important to remember Box’s maxim that “All models are wrong but some are useful.”

We focus on the distinction between these models and explanations in philosophy and sociology. These models can be understood as a “do it yourself kit” for explanations, allowing a practitioner to directly answer “what if questions” or generate contrastive explanations without external assistance. Although a valuable ability, giving these models as explanations appears more difficult than necessary, and other forms of explanation may not have the same trade-offs. We contrast the different schools of thought on what makes an explanation, and suggest that machine learning might benefit from viewing the problem more broadly… (More)”.

What do we learn from Machine Learning?


Blog by Giovanni Buttarelli: “…There are few authorities monitoring the impact of new technologies on fundamental rights so closely and intensively as data protection and privacy commissioners. At the International Conference of Data Protection and Privacy Commissioners, the 40th ICDPPC (which the EDPS had the honour to host), they continued the discussion on AI which began in Marrakesh two years ago with a reflection paper prepared by EDPS experts. In the meantime, many national data protection authorities have invested considerable efforts and provided important contributions to the discussion. To name only a few, the data protection authorities from NorwayFrance, the UK and Schleswig-Holstein have published research and reflections on AI, ethics and fundamental rights. We all see that some applications of AI raise immediate concerns about data protection and privacy; but it also seems generally accepted that there are far wider-reaching ethical implications, as a group of AI researchers also recently concluded. Data protection and privacy commissioners have now made a forceful intervention by adopting a declaration on ethics and data protection in artificial intelligence which spells out six principles for the future development and use of AI – fairness, accountability, transparency, privacy by design, empowerment and non-discrimination – and demands concerted international efforts  to implement such governance principles. Conference members will contribute to these efforts, including through a new permanent working group on Ethics and Data Protection in Artificial Intelligence.

The ICDPPC was also chosen by an alliance of NGOs and individuals, The Public Voice, as the moment to launch its own Universal Guidelines on Artificial Intelligence (UGAI). The twelve principles laid down in these guidelines extend and complement those of the ICDPPC declaration.

We are only at the beginning of this debate. More voices will be heard: think tanks such as CIPL are coming forward with their suggestions, and so will many other organisations.

At international level, the Council of Europe has invested efforts in assessing the impact of AI, and has announced a report and guidelines to be published soon. The European Commission has appointed an expert group which will, among other tasks, give recommendations on future-related policy development and on ethical, legal and societal issues related to AI, including socio-economic challenges.

As I already pointed out in an earlier blogpost, it is our responsibility to ensure that the technologies which will determine the way we and future generations communicate, work and live together, are developed in such a way that the respect for fundamental rights and the rule of law are supported and not undermined….(More)”.