Urban Systems Design: From “science for design” to “design in science”


Introduction to Special Issue of Urban Analytics and City Science by Perry PJ Yang and Yoshiki Yamagata: “The direct design of cities is often regarded as impossible, owing to the fluidity, complexity, and uncertainty entailed in urban systems. And yet, we do design our cities, however imperfectly. Cities are objects of our own creation, they are intended landscapes, manageable, experienced and susceptible to analysis (Lynch, 1984). Urban design as a discipline has always focused on “design” in its professional practices. Urban designers tend to ask normative questions about how good city forms are designed, or how a city and its urban spaces ought to be made, thereby problematizing urban form-making and the values entailed. These design questions are analytically distinct from “science”-related research that tends to ask positive questions such as how cities function, or what properties emerge from interactive processes of urban systems. The latter questions require data, analytic techniques, and research methods to generate insight.

This theme issue “Urban Systems Design” is an attempt to outline a research agenda by connecting urban design and systems science, which is grounded in both normative and positive questions. It aims to contribute to the emerging field of urban analytics and city science that is central to this journal. Recent discussions of smart cities inspire urban design, planning and architectural professionals to address questions of how smart cities are shaped and what should be made. What are the impacts of information and communication technologies (ICT) on the questions of how built environments are designed and developed? How would the internet of things (IoT), big data analytics and urban automation influence how humans perceive, experience, use and interact with the urban environment? In short, what are the emerging new urban forms driven by the rapid move to ‘smart cities’?…(More)”.

Big Data, Political Campaigning and the Law


Book edited by Normann Witzleb, Moira Paterson, and Janice Richardson on “Democracy and Privacy in the Age of Micro-Targeting”…: “In this multidisciplinary book, experts from around the globe examine how data-driven political campaigning works, what challenges it poses for personal privacy and democracy, and how emerging practices should be regulated.

The rise of big data analytics in the political process has triggered official investigations in many countries around the world, and become the subject of broad and intense debate. Political parties increasingly rely on data analytics to profile the electorate and to target specific voter groups with individualised messages based on their demographic attributes. Political micro-targeting has become a major factor in modern campaigning, because of its potential to influence opinions, to mobilise supporters and to get out votes. The book explores the legal, philosophical and political dimensions of big data analytics in the electoral process. It demonstrates that the unregulated use of big personal data for political purposes not only infringes voters’ privacy rights, but also has the potential to jeopardise the future of the democratic process, and proposes reforms to address the key regulatory and ethical questions arising from the mining, use and storage of massive amounts of voter data.

Providing an interdisciplinary assessment of the use and regulation of big data in the political process, this book will appeal to scholars from law, political science, political philosophy, and media studies, policy makers and anyone who cares about democracy in the age of data-driven political campaigning….(More)”.

AI Global Surveillance Technology


Carnegie Endowment: “Artificial intelligence (AI) technology is rapidly proliferating around the world. A growing number of states are deploying advanced AI surveillance tools to monitor, track, and surveil citizens to accomplish a range of policy objectives—some lawful, others that violate human rights, and many of which fall into a murky middle ground.

In order to appropriately address the effects of this technology, it is important to first understand where these tools are being deployed and how they are being used.

To provide greater clarity, Carnegie presents an AI Global Surveillance (AIGS) Index—representing one of the first research efforts of its kind. The index compiles empirical data on AI surveillance use for 176 countries around the world. It does not distinguish between legitimate and unlawful uses of AI surveillance. Rather, the purpose of the research is to show how new surveillance capabilities are transforming the ability of governments to monitor and track individuals or systems. It specifically asks:

  • Which countries are adopting AI surveillance technology?
  • What specific types of AI surveillance are governments deploying?
  • Which countries and companies are supplying this technology?

Learn more about our findings and how AI surveillance technology is spreading rapidly around the globe….(More)”.

Real-time flu tracking. By monitoring social media, scientists can monitor outbreaks as they happen.


Charles Schmidt at Nature: “Conventional influenza surveillance describes outbreaks of flu that have already happened. It is based on reports from doctors, and produces data that take weeks to process — often leaving the health authorities to chase the virus around, rather than get on top of it.

But every day, thousands of unwell people pour details of their symptoms and, perhaps unknowingly, locations into search engines and social media, creating a trove of real-time flu data. If such data could be used to monitor flu outbreaks as they happen and to make accurate predictions about its spread, that could transform public-health surveillance.

Powerful computational tools such as machine learning and a growing diversity of data streams — not just search queries and social media, but also cloud-based electronic health records and human mobility patterns inferred from census information — are making it increasingly possible to monitor the spread of flu through the population by following its digital signal. Now, models that track flu in real time and forecast flu trends are making inroads into public-health practice.

“We’re becoming much more comfortable with how these models perform,” says Matthew Biggerstaff, an epidemiologist who works on flu preparedness at the US Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia.

In 2013–14, the CDC launched the FluSight Network, a website informed by digital modelling that predicts the timing, peak and short-term intensity of the flu season in ten regions of the United States and across the whole country. According to Biggerstaff, flu forecasting helps responders to plan ahead, so they can be ready with vaccinations and communication strategies to limit the effects of the virus. Encouraged by progress in the field, the CDC announced in January 2019 that it will spend US$17.5 million to create a network of influenza-forecasting centres of excellence, each tasked with improving the accuracy and communication of real-time forecasts.

The CDC is leading the way on digital flu surveillance, but health agencies elsewhere are following suit. “We’ve been working to develop and apply these models with collaborators using a range of data sources,” says Richard Pebody, a consultant epidemiologist at Public Health England in London. The capacity to predict flu trajectories two to three weeks in advance, Pebody says, “will be very valuable for health-service planning.”…(More)”.

When Ostrom Meets Blockchain: Exploring the Potentials of Blockchain for Commons Governance


Paper by David Rozas , Antonio Tenorio-Fornés , Silvia Díaz-Molina , and Samer Hassan: “Blockchain technologies have generated excitement, yet their potential to enable new forms of governance remains largely unexplored. Two confronting standpoints dominate the emergent debate around blockchain-based governance: discourses characterised by the presence of techno-determinist and market-driven values, which tend to ignore the complexity of social organisation; and critical accounts of such discourses which, whilst contributing to identifying limitations, consider the role of traditional centralised institutions as inherently necessary to enable democratic forms of governance. Therefore the question arises, can we build perspectives of blockchain-based governance that go beyond markets and states?

In this article we draw on the Nobel laureate economist Elinor Ostrom’s principles for self-governance of communities to explore the transformative potential of blockchain. We approach blockchain through the identification and conceptualisation of affordances that this technology may provide to communities. For each affordance, we carry out a detailed analysis situating each in the context of Ostrom’s principles, considering both the potentials of algorithmic governance and the importance of incorporating communities’ social practices. The relationships found between these affordances and Ostrom’s principles allow us to provide a perspective focussed on blockchain-based commons governance. By carrying out this analysis, we aim to expand the debate from one dominated by a culture of competition to one that promotes a culture of cooperation…(More)”.

Agora: Towards An Open Ecosystem for Democratizing Data Science & Artificial Intelligence


Paper by Jonas Traub et al: “Data science and artificial intelligence are driven by a plethora of diverse data-related assets including datasets, data streams, algorithms, processing software, compute resources, and domain knowledge. As providing all these assets requires a huge investment, data sciences and artificial intelligence are currently dominated by a small number of providers who can afford these investments. In this paper, we present a vision of a data ecosystem to democratize data science and artificial intelligence. In particular, we envision a data infrastructure for fine-grained asset exchange in combination with scalable systems operation. This will overcome lock-in effects and remove entry barriers for new asset providers. Our goal is to enable companies, research organizations, and individuals to have equal access to data, data science, and artificial intelligence. Such an open ecosystem has recently been put on the agenda of several governments and industrial associations. We point out the requirements and the research challenges as well as outline an initial data infrastructure architecture for building such a data ecosystem…(More)”.

The business case for integrating claims and clinical data


Claudia Williams at MedCityNews: “The path to value-based care is arduous. For health plans, their ability to manage care, assess quality, lower costs, and streamline reporting is directly impacted by access to clinical data. For providers, the same can be said due to their lack of access to claims data. 

Providers and health plans are increasingly demanding integrated claims and clinical data to drive and support value-based care programs. These organizations know that clinical and claims information from more than a single organization is the only way to get a true picture of patient care. From avoiding medication errors to enabling an evidence-based approach to treatment or identifying at-risk patients, the value of integrated claims and clinical data is immense — and will have far-reaching influence on both health outcomes and costs of care over time.

On July 30, Medicare announced the Data at the Point of Care pilot to share valuable claims data with Medicare providers in order to “fill in information gaps for clinicians, giving them a more structured and complete patient history with information like previous diagnoses, past procedures, and medication lists.” But that’s not the only example. To transition from fee-for-service to value-based care, providers and health plans have begun to partner with health data networks to access integrated clinical and claims data: 

Health plan adoption of integrated data strategy

A California health plan is partnering with one of the largest nonprofit health data networks in California, to better integrate clinical and claims data. …

Providers leveraging claims data to understand patient medication patterns 

Doctors using advanced health data networks typically see a full list of patients’ medications, derived from claims, when they treat them. With this information available, doctors can avoid dangerous drug to-drug interactions when they prescribe new medications. After a visit, they can also follow up and see if a patient actually filled a prescription and is still taking it….(More)”.

Gender Gaps in Urban Mobility


Brief of the Data 2X Big Data and Gender Brief Series by The GovLab, UNICEF, Universidad Del Desarrollo, Telefónica R&D Center, ISI Foundation, and DigitalGlobe: “Mobility is gendered. For example, the household division of labor in many societies leads women and girls to take more multi-purpose, multi-stop trips than men. Women-headed households also tend to work more in the informal sector, with limited access to transportation subsidies, and use of public transit is further reduced by the risk of violence in public spaces.

This brief summarizes a recent analysis of gendered urban mobility in 51 (out of 52) neighborhoods of Santiago, Chile, relying on the call detail records (CDRs) of a large sample of mobile phone users over a period of three months. We found that: 1) women move less overall than men; 2) have a smaller radius of movement; and 3) tend to concentrate their time in a smaller set of locations. These mobility gaps are linked to lower average incomes and fewer public and private transportation options. These insights, taken from large volumes of passively generated, inexpensive data streaming in realtime, can help policymakers design more gender inclusive urban transit systems….(More)”.

Guide to Mobile Data Analytics in Refugee Scenarios


Book edited Albert Ali Salah, Alex Pentland, Bruno Lepri and Emmanuel Letouzé: “After the start of the Syrian Civil War in 2011–12, increasing numbers of civilians sought refuge in neighboring countries. By May 2017, Turkey had received over 3 million refugees — the largest r efugee population in the world. Some lived in government-run camps near the Syrian border, but many have moved to cities looking for work and better living conditions. They faced problems of integration, income, welfare, employment, health, education, language, social tension, and discrimination. In order to develop sound policies to solve these interlinked problems, a good understanding of refugee dynamics is necessary.

This book summarizes the most important findings of the Data for Refugees (D4R) Challenge, which was a non-profit project initiated to improve the conditions of the Syrian refugees in Turkey by providing a database for the scientific community to enable research on urgent problems concerning refugees. The database, based on anonymized mobile call detail records (CDRs) of phone calls and SMS messages of one million Turk Telekom customers, indicates the broad activity and mobility patterns of refugees and citizens in Turkey for the year 1 January to 31 December 2017. Over 100 teams from around the globe applied to take part in the challenge, and 61 teams were granted access to the data.

This book describes the challenge, and presents selected and revised project reports on the five major themes: unemployment, health, education, social integration, and safety, respectively. These are complemented by additional invited chapters describing related projects from international governmental organizations, technological infrastructure, as well as ethical aspects. The last chapter includes policy recommendations, based on the lessons learned.

The book will serve as a guideline for creating innovative data-centered collaborations between industry, academia, government, and non-profit humanitarian agencies to deal with complex problems in refugee scenarios. It illustrates the possibilities of big data analytics in coping with refugee crises and humanitarian responses, by showcasing innovative approaches drawing on multiple data sources, information visualization, pattern analysis, and statistical analysis.It will also provide researchers and students working with mobility data with an excellent coverage across data science, economics, sociology, urban computing, education, migration studies, and more….(More)”.

#Kremlin: Using Hashtags to Analyze Russian Disinformation Strategy and Dissemination on Twitter


Paper by Sarah Oates, and John Gray: “Reports of Russian interference in U.S. elections have raised grave concerns about the spread of foreign disinformation on social media sites, but there is little detailed analysis that links traditional political communication theory to social media analytics. As a result, it is difficult for researchers and analysts to gauge the nature or level of the threat that is disseminated via social media. This paper leverages both social science and data science by using traditional content analysis and Twitter analytics to trace how key aspects of Russian strategic narratives were distributed via #skripal, #mh17, #Donetsk, and #russophobia in late 2018.

This work will define how key Russian international communicative goals are expressed through strategic narratives, describe how to find hashtags that reflect those narratives, and analyze user activity around the hashtags. This tests both how Twitter amplifies specific information goals of the Russians as well as the relative success (or failure) of particular hashtags to spread those messages effectively. This research uses Mentionmapp, a system co-developed by one of the authors (Gray) that employs network analytics and machine intelligence to identify the behavior of Twitter users as well as generate profiles of users via posting history and connections. This study demonstrates how political communication theory can be used to frame the study of social media; how to relate knowledge of Russian strategic priorities to labels on social media such as Twitter hashtags; and to test this approach by examining a set of Russian propaganda narratives as they are represented by hashtags. Our research finds that some Twitter users are consistently active across multiple Kremlin-linked hashtags, suggesting that knowledge of these hashtags is an important way to identify Russian propaganda online influencers. More broadly, we suggest that Twitter dichotomies such as bot/human or troll/citizen should be used with caution and analysis should instead address the nuances in Twitter use that reflect varying levels of engagement or even awareness in spreading foreign disinformation online….(More)”.