To Better Predict Traffic, Look to the Electric Grid


Linda Poon at CityLab: “The way we consume power after midnight can reveal how we bad the morning rush hour will be….

Commuters check Google Maps for traffic updates the same way they check the weather app for rain predictions. And for good reasons: By pooling information from millions of drivers already on the road, Google can paint an impressively accurate real-time portrait of congestion. Meanwhile, historical numbers can roughly predict when your morning commutes may be particularly bad.

But “the information we extract from traffic data has been exhausted,” said Zhen (Sean) Qian, who directs the Mobility Data Analytics Center at Carnegie Mellon University. He thinks that to more accurately predict how gridlock varies from day to day, there’s a whole other set of data that cities haven’t mined yet: electricity use.

“Essentially we all use the urban system—the electricity, water, the sewage system and gas—and when people use them and how heavily they do is correlated to the way they use the transportation system,” he said. How we use electricity at night, it turns out, can reveal when we leave for work the next day. “So we might be able to get new information that helps explain travel time one or two hours in advance by having a better understanding of human activity.”

 In a recent study in the journal Transportation Research Part C, Qian and his student Pinchao Zhang used 2014 data to demonstrate how electricity usage patterns can predict when peak congestion begins on various segments of a major highway in Austin, Texas—the 14th most congested city in the U.S. They crunched 79 days worth of electricity usage data for 322 households (stripped of all private information, including location), feeding it into a machine learning algorithm that then categorized the households into 10 groups according to the time and amount of electricity use between midnight and 6 a.m. By extrapolating the most critical traffic-related information about each group for each day, the model then predicted what the commute may look like that morning.
When compared with 2014 traffic data, they found that 8 out of the 10 patterns had an impact on highway traffic. Households that show a spike of electricity use from midnight to 2 a.m., for example, may be night owls who sleep in, leave late, and likely won’t contribute to the early morning congestion. In contrast, households that report low electricity use from midnight to 5 a.m., followed by a rise after 5:30 a.m., could be early risers who will be on the road during rush hour. If the researchers’ model detects more households falling into the former group, it might predict that peak congestion will start closer to, say, 7:45 a.m. rather than the usual 7:30….(More)”.

From Code to Cure


David J. Craig at Columbia Magazine: “Armed with enormous amounts of clinical data, teams of computer scientists, statisticians, and physicians are rewriting the rules of medical research….

The deluge is upon us.

We are living in the age of big data, and with every link we click, every message we send, and every movement we make, we generate torrents of information.

In the past two years, the world has produced more than 90 percent of all the digital data that has ever been created. New technologies churn out an estimated 2.5 quintillion bytes per day. Data pours in from social media and cell phones, weather satellites and space telescopes, digital cameras and video feeds, medical records and library collections. Technologies monitor the number of steps we walk each day, the structural integrity of dams and bridges, and the barely perceptible tremors that indicate a person is developing Parkinson’s disease. These are the building blocks of our knowledge economy.

This tsunami of information is also providing opportunities to study the world in entirely new ways. Nowhere is this more evident than in medicine. Today, breakthroughs are being made not just in labs but on laptops, as biomedical researchers trained in mathematics, computer science, and statistics use powerful new analytic tools to glean insights from enormous data sets and help doctors prevent, treat, and cure disease.

“The medical field is going through a major period of transformation, and many of the changes are driven by information technology,” says George Hripcsak ’85PS,’00PH, a physician who chairs the Department of Biomedical Informatics at Columbia University Irving Medical Center (CUIMC). “Diagnostic techniques like genomic screening and high-resolution imaging are generating more raw data than we’ve ever handled before. At the same time, researchers are increasingly looking outside the confines of their own laboratories and clinics for data, because they recognize that by analyzing the huge streams of digital information now available online they can make discoveries that were never possible before.” …

Consider, for example, what the young computer scientist has been able to accomplish in recent years by mining an FDA database of prescription-drug side effects. The archive, which contains millions of reports of adverse drug reactions that physicians have observed in their patients, is continuously monitored by government scientists whose job it is to spot problems and pull drugs off the market if necessary. And yet by drilling down into the database with his own analytic tools, Tatonetti has found evidence that dozens of commonly prescribed drugs may interact in dangerous ways that have previously gone unnoticed. Among his most alarming findings: the antibiotic ceftriaxone, when taken with the heartburn medication lansoprazole, can trigger a type of heart arrhythmia called QT prolongation, which is known to cause otherwise healthy people to suddenly drop dead…(More)”

Our misguided love affair with techno-politics


The Economist: “What might happen if technology, which smothers us with its bounty as consumers, made the same inroads into politics? Might data-driven recommendations suggest “policies we may like” just as Amazon recommends books? Would we swipe right to pick candidates in elections or answers in referendums? Could businesses expand into every cranny of political and social life, replete with ® and ™ at each turn? What would this mean for political discourse and individual freedom?

This dystopian yet all-too-imaginable world has been conjured up by Giuseppe Porcaro in his novel “Disco Sour”. The story takes place in the near future, after a terrible war and breakdown of nations, when the (fictional) illegitimate son of Roman Polanski creates an app called Plebiscitum that works like Tinder for politics.

Mr Porcaro—who comes armed with a doctorate in political geography—uses the plot to consider questions of politics in the networked age. The Economist’s Open Future initiative asked him to reply to five questions in around 100 words each. An excerpt from the book appears thereafter.

*     *     *

The Economist: In your novel, an entrepreneur attempts to replace elections with an app that asks people to vote on individual policies. Is that science fiction or prediction? And were you influenced by Italy’s Five Star Movement?

Giuseppe Porcaro: The idea of imagining a Tinder-style app replacing elections came up because I see connections between the evolution of dating habits and 21st-century politics. A new sort of “tinderpolitics” kicking in when instant gratification substitutes substantial participation. Think about tweet trolling, for example.

Italy’s Five Star Movement was certainly another inspiration as it is has been a pioneer in using an online platform to successfully create a sort of new political mass movement. Another one was an Australian political party called Flux. They aim to replace the world’s elected legislatures with a new system known as issue-based direct democracy.

The Economist: Is it too cynical to suggest that a more direct relationship between citizens and policymaking would lead to a more reactionary political landscape? Or does the ideal of liberal democracy depend on an ideal citizenry that simply doesn’t exist?  

Mr Porcaro: It would be cynical to put the blame on citizens for getting too close to influence decision-making. That would go against the very essence of the “liberal democracy ideal”. However, I am critical towards the pervasive idea that technology can provide quick fixes to bridge the gap between citizens and the government. By applying computational thinking to democracy, an extreme individualisation and instant participation, we forget democracy is not simply the result of an election or the mathematical sum of individual votes. Citizens risk entering a vicious circle where reactionary politics are easier to go through.

The Economist: Modern representative democracy was in some ways a response to the industrial revolution. If AI and automation radically alter the world we live in, will we have to update the way democracy works too—and if so, how? 

Mr Porcaro: Democracy has already morphed several times. 19th century’s liberal democracy was shaken by universal suffrage, and adapted to the Fordist mode of production with the mass party. May 1968 challenged that model. Today, the massive availability of data and the increasing power of decision-making algorithms will change both political institutions.

The policy “production” process might be utterly redesigned. Data collected by devices we use on a daily basis (such as vehicles, domestic appliances and wearable sensors) will provide evidence about the drivers of personal voting choices, or the accountability of government decisions. …(More)

This surprising, everyday tool might hold the key to changing human behavior


Annabelle Timsit at Quartz: “To be a person in the modern world is to worry about your relationship with your phone. According to critics, smartphones are making us ill-mannered and sore-necked, dragging parents’ attention away from their kids, and destroying an entire generation.

But phones don’t have to be bad. With 4.68 billion people forecast to become mobile phone users by 2019, nonprofits and social science researchers are exploring new ways to turn our love of screens into a force for good. One increasingly popular option: Using texting to help change human behavior.

Texting: A unique tool

The short message service (SMS) was invented in the late 1980s, and the first text message was sent in 1992. (Engineer Neil Papworth sent “merry Christmas” to then-Vodafone director Richard Jarvis.) In the decades since, texting has emerged as the preferred communication method for many, and in particular younger generations. While that kind of habit-forming can be problematic—47% of US smartphone users say they “couldn’t live without” the device—our attachment to our phones also makes text-based programs a good way to encourage people to make better choices.

“Texting, because it’s anchored in mobile phones, has the ability to be with you all the time, and that gives us an enormous flexibility on precision,” says Todd Rose, director of the Mind, Brain, & Education Program at the Harvard Graduate School of Education. “When people lead busy lives, they need timely, targeted, actionable information.”

And who is busier than a parent? Text-based programs can help current or would-be moms and dads with everything from medication pickup to childhood development. Text4Baby, for example, messages pregnant women and young moms with health information and reminders about upcoming doctor visits. Vroom, an app for building babies’ brains, sends parents research-based prompts to help them build positive relationships with their children (for example, by suggesting they ask toddlers to describe how they’re feeling based on the weather). Muse, an AI-powered app, uses machine learning and big data to try and help parents raise creative, motivated, emotionally intelligent kids. As Jenny Anderson writes in Quartz: “There is ample evidence that we can modify parents’ behavior through technological nudges.”

Research suggests text-based programs may also be helpful in supporting young children’s academic and cognitive development. …Texts aren’t just being used to help out parents. Non-governmental organizations (NGOs) have also used them to encourage civic participation in kids and young adults. Open Progress, for example, has an all-volunteer community called “text troop” that messages young adults across the US, reminding them to register to vote and helping them find their polling location.

Text-based programs are also useful in the field of nutrition, where private companies and public-health organizations have embraced them as a way to give advice on healthy eating and weight loss. The National Cancer Institute runs a text-based program called SmokefreeTXT that sends US adults between three and five messages per day for up to eight weeks, to help them quit smoking.

Texting programs can be a good way to nudge people toward improving their mental health, too. Crisis Text Line, for example, was the first national 24/7 crisis-intervention hotline to conduct counseling conversations entirely over text…(More).

Regulatory Technology – Replacing Law with Computer Code


LSE Legal Studies Working Paper by Eva Micheler and Anna Whaley: “Recently both the Bank of England and the Financial Conduct Authority have carried out experiments using new digital technology for regulatory purposes. The idea is to replace rules written in natural legal language with computer code and to use artificial intelligence for regulatory purposes.

This new way of designing public law is in line with the government’s vision for the UK to become a global leader in digital technology. It is also reflected in the FCA’s business plan.

The article reviews the technology and the advantages and disadvantages of combining the technology with regulatory law. It then informs the discussion from a broader public law perspective. It analyses regulatory technology through criteria developed in the mainstream regulatory discourse. It contributes to that discourse by anticipating problems that will arise as the technology evolves. In addition, the hope is to assist the government in avoiding mistakes that have occurred in the past and creating a better system from the start…(More)”.

Big Data Is Getting Bigger. So Are the Privacy and Ethical Questions.


Goldie Blumenstyk at The Chronicle of Higher Education: “…The next step in using “big data” for student success is upon us. It’s a little cool. And also kind of creepy.

This new approach goes beyond the tactics now used by hundreds of colleges, which depend on data collected from sources like classroom teaching platforms and student-information systems. It not only makes a technological leap; it also raises issues around ethics and privacy.

Here’s how it works: Whenever you log on to a wireless network with your cellphone or computer, you leave a digital footprint. Move from one building to another while staying on the same network, and that network knows how long you stayed and where you went. That data is collected continuously and automatically from the network’s various nodes.

Now, with the help of a company called Degree Analytics, a few colleges are beginning to use location data collected from students’ cellphones and laptops as they move around campus. Some colleges are using it to improve the kind of advice they might send to students, like a text-message reminder to go to class if they’ve been absent.

Others see it as a tool for making decisions on how to use their facilities. St. Edward’s University, in Austin, Tex., used the data to better understand how students were using its computer-equipped spaces. It found that a renovated lounge, with relatively few computers but with Wi-Fi access and several comfy couches, was one of the most popular such sites on campus. Now the university knows it may not need to buy as many computers as it once thought.

As Gary Garofalo, a co-founder and chief revenue officer of Degree Analytics, told me, “the network data has very intriguing advantages” over the forms of data that colleges now collect.

Some of those advantages are obvious: If you’ve got automatic information on every person walking around with a cellphone, your dataset is more complete than if you need to extract it from a learning-management system or from the swipe-card readers some colleges use to track students’ activities. Many colleges now collect such data to determine students’ engagement with their coursework and campus activities.

Of course, the 24-7 reporting of the data is also what makes this approach seem kind of creepy….

I’m not the first to ask questions like this. A couple of years ago, a group of educators organized by Martin Kurzweil of Ithaka S+R and Mitchell Stevens of Stanford University issued a series of guidelines for colleges and companies to consider as they began to embrace data analytics. Among other principles, the guidelines highlighted the importance of being transparent about how the information is used, and ensuring that institutions’ leaders really understand what companies are doing with the data they collect. Experts at New America weighed in too.

I asked Kurzweil what he makes of the use of Wi-Fi information. Location tracking tends toward the “dicey” side of the spectrum, he says, though perhaps not as far out as using students’ social-media habits, health information, or what they check out from the library. The fundamental question, he says, is “how are they managing it?”… So is this the future? Benz, at least, certainly hopes so. Inspired by the Wi-Fi-based StudentLife research project at Dartmouth College and the experiences Purdue University is having with students’ use of its Forecast app, he’s in talks now with a research university about a project that would generate other insights that might be gleaned from students’ Wi-Fi-usage patterns….(More)

Open Data Use Case: Using data to improve public health


Chris Willsher at ODX: “Studies have shown that a large majority of Canadians spend too much time in sedentary activities. According to the Health Status of Canadians report in 2016, only 2 out of 10 Canadian adults met the Canadian Physical Activity Guidelines. Increasing physical activity and healthy lifestyle behaviours can reduce the risk of chronic illnesses, which can decrease pressures on our health care system. And data can play a role in improving public health.

We are already seeing examples of a push to augment the role of data, with programs recently being launched at home and abroad. Canada and the US established an initiative in the spring of 2017 called the Healthy Behaviour Data Challenge. The goal of the initiative is to open up new methods for generating and using data to monitor health, specifically in the areas of physical activity, sleep, sedentary behaviour, or nutrition. The challenge recently wrapped up with winners being announced in late April 2018. Programs such as this provide incentive to the private sector to explore data’s role in measuring healthy lifestyles and raise awareness of the importance of finding new solutions.

In the UK, Sport England and the Open Data Institute (ODI) have collaborated to create the OpenActive initiative. It has set out to encourage both government and private sector entities to unlock data around physical activities so that others can utilize this information to ease the process of engaging in an active lifestyle. The goal is to “make it as easy to find and book a badminton court as it is to book a hotel room.” As of last fall, OpenActive counted more than 76,000 activities across 1,000 locations from their partner organizations. They have also developed a standard for activity data to ensure consistency among data sources, which eases the ability for developers to work with the data. Again, this initiative serves as a mechanism for open data to help address public health issues.

In Canada, we are seeing more open datasets that could be utilized to devise new solutions for generating higher rates of physical activity. A lot of useful information is available at the municipal level that can provide specifics around local infrastructure. Plus, there is data at the provincial and federal level that can provide higher-level insights useful to developing methods for promoting healthier lifestyles.

Information about cycling infrastructure seems to be relatively widespread among municipalities with a robust open data platform. As an example, the City of Toronto, publishes map data of bicycle routes around the city. This information could be utilized in a way to help citizens find the best bike route between two points. In addition, the city also publishes data on indooroutdoor, and post and ring bicycle parking facilities that can identify where to securely lock your bike. Exploring data from proprietary sources, such as Strava, could further enhance an application by layering on popular cycling routes or allow users to integrate their personal information. And algorithms could allow for the inclusion of data on comparable driving times, projected health benefits, or savings on automotive maintenance.

The City of Calgary publishes data on park sports surfaces and recreation facilities that could potentially be incorporated into sports league applications. This would make it easier to display locations for upcoming games or to arrange pick-up games. Knowing where there are fields nearby that may be available for a last minute soccer game could be useful in encouraging use of the facilities and generating more physical activity. Again, other data sources, such as weather, could be integrated with this information to provide a planning tool for organizing these activities….(More)”.

Predicting Public Interest Issue Campaign Participation on Social Media


Jungyun Won, Linda Hon, Ah Ram Lee in the Journal of Public Interest Communication: “This study investigates what motivates people to participate in a social media campaign in the context of animal protection issues.

Structural equation modeling (SEM) tested a proposed research model with survey data from 326 respondents.

Situational awareness, participation benefits, and social ties influence were positive predictors of social media campaign participation intentions. Situational awareness also partially mediates the relationship between participation benefits and participation intentions as well as strong ties influence and participation intentions.

When designing social media campaigns, public interest communicators should raise situational awareness and emphasize participation benefits. Messages shared through social networks, especially via strong ties, also may be more effective than those posted only on official websites or social networking sites (SNSs)….(More)”.

Identifying Healthcare Fraud with Open Data


Paper by Xuan Zhang et al: “Health care fraud is a serious problem that impacts every patient and consumer. This fraudulent behavior causes excessive financial losses every year and causes significant patient harm. Healthcare fraud includes health insurance fraud, fraudulent billing of insurers for services not provided, and exaggeration of medical services, etc. To identify healthcare fraud thus becomes an urgent task to avoid the abuse and waste of public funds. Existing methods in this research field usually use classified data from governments, which greatly compromises the generalizability and scope of application. This paper introduces a methodology to use publicly available data sources to identify potentially fraudulent behavior among physicians. The research involved data pairing of multiple datasets, selection of useful features, comparisons of classification models, and analysis of useful predictors. Our performance evaluation results clearly demonstrate the efficacy of the proposed method….(More)”.

Open innovation and the evaluation of internet-enabled public services in smart cities


Krassimira Paskaleva and Ian Cooper in Technovation: This article is focused on public service innovation from an innovation management perspective. It presents research experience gained from a European project for managing social and technological innovation in the production and evaluation of citizen-centred internet-enabled services in the public sector.

It is based on six urban pilot initiatives, which sought to operationalise a new approach to co-producing and co-evaluating civic services in smart cities – commonly referred to as open innovation for smart city services. Research suggests that the evidence base underpinning this approach is not sufficiently robust to support claims being made about its effectiveness.

Instead evaluation research of citizen-centred internet-enabled urban services is in its infancy and there are no tested methods or tools in the literature for supporting this approach.

The paper reports on the development and trialing of a novel Co-evaluation Framework, indicators and reporting categories, used to support the co-production of smart city services in an EU-funded project. Our point of departure is that innovation of services is a sub-set of innovation management that requires effective integration of technological with social innovation, supported by the right skills and capacities. The main skills sets needed for effective co-evaluation of open innovation services are the integration of stakeholder management with evaluation capacities.”