Understanding Actionable Intelligence for Social Policy


Video on “The Actionable Intelligence (AI) model is a new approach to policy development. The AI approach is supported by Integrated Data Systems (IDS) which link administrative records from multiple agencies to give a broader view of social problems and policy solutions. The use of linked administrative data allows policy analysts, program evaluators and social innovators to test new social program ideas at a much lower cost and higher speed. AI uses these IDS to create a newly informed dialogue among executive leaders, stakeholders and researchers regarding what works best, for whom and in the most cost effective way….(More videos from AISP-UPENN)

Understanding Actionable Intelligence for Social Policy from AISP_UPENN on Vimeo.

Why big data may be having a big effect on how our politics plays out


 in The Conversation: “…big data… is an inconceivably vast mass of information, which at first glance would seem a giant mess; just white noise.

Unless you know how to decipher it.

According to a story first published in Zurich-based Das Magazin in December and more recently taken up by Motherboard, events such as Brexit and Trump’s ascendency may have been made possible through just such deciphering. The argument is that technology combining psychological profiling and data analysis may have played a pivotal part in exploiting unconscious bias at the individual voter level. The theory is this was used in the recent US election to increase or suppress votes to benefit particular candidates in crucial locations. It is claimed that the company behind this may be active in numerous countries.

The technology at play is based on the integration of a model of psychological profiling known as OCEAN. This uses the details contained within individuals’ digital footprints to create user-specific profiles. These map to the level of the individual, identifiable voter, who can then be manipulated by exploiting beliefs, preferences and biases that they might not even be aware of, but which their data has revealed about them in glorious detail.

As well as enabling the creation of tailored media content, this can also be used to create scripts of relevant talking points for campaign doorknockers to focus on, according to the address and identity of the householder to whom they are speaking.

This goes well beyond the scope and detail of previous campaign strategies. If the theory about the role of these techniques is correct, it signals a new landscape of political strategising. An active researcher in the field, when writing about the company behind this technology (which Trump paid for services during his election campaign), described the potential scale of such technologies:

Marketers have long tailored their placement of advertisements based on their target group, for example by placing ads aimed at conservative consumers in magazines read by conservative audiences. What is new about the psychological targeting methods implemented by Cambridge Analytica, however, is their precision and scale. According to CEO Alexander Nix, the company holds detailed psycho-demographic profiles of more than 220 million US citizens and used over 175,000 different ad messages to meet the unique motivations of their recipients….(More)”

Rules for a Flat World – Why Humans Invented Law and How to Reinvent It for a Complex Global Economy


Book by Gillian Hadfield: “… picks up where New York Times columnist Thomas Friedman left off in his influential 2005 book, The World is Flat. Friedman was focused on the infrastructure of communications and technology-the new web-based platform that allows business to follow the hunt for lower costs, higher value and greater efficiency around the planet seemingly oblivious to the boundaries of nation states. Hadfield peels back this technological platform to look at the ‘structure that lies beneath’—our legal infrastructure, the platform of rules about who can do what, when and how. Often taken for granted, economic growth throughout human history has depended at least as much on the evolution of new systems of rules to support ever-more complex modes of cooperation and trade as it has on technological innovation. When Google rolled out YouTube in over one hundred countries around the globe simultaneously, for example, it faced not only the challenges of technology but also the staggering problem of how to build success in the context of a bewildering and often conflicting patchwork of nation-state-based laws and legal systems affecting every aspect of the business-contract, copyright, encryption, censorship, advertising and more. Google is not alone. A study presented at the World Economic Forum in Davos in 2011 found that for global firms, the number one challenge of the modern economy is increasing complexity, and the number one source of complexity is law. Today, even our startups, the engines of economic growth, are global from Day One.

Put simply, the law and legal methods on which we currently rely have failed to evolve along with technology. They are increasingly unable to cope with the speed, complexity, and constant border-crossing of our new globally inter-connected environment. Our current legal systems are still rooted in the politics-based nation state platform on which the industrial revolution was built. Hadfield argues that even though these systems supported fantastic growth over the past two centuries, today they are too slow, costly, cumbersome and localized to support the exponential rise in economic complexity they fostered. …

The answer to our troubles with law, however, is not the one critics usually reach for—to have less of it. Recognizing that law provides critical infrastructure for the cooperation and collaboration on which economic growth is built is the first step, Hadfield argues, to building a legal environment that does more of what we need it to do and less of what we don’t. …(More)”

What Communication Can Contribute to Data Studies: Three Lenses on Communication and Data


Andrew Schrock at the International Journal of Communication: “We are awash in predictions about our data-driven future. Enthusiasts believe big data imposes new ways of knowing, while critics worry it will enable powerful regimes of institutional control. This debate has been of keen interest to communication scholars. To encourage conceptual clarity, this article draws on communication scholarship to suggest three lenses for data epistemologies. I review the common social scientific perspective of communication as data. A data as discourse lens interrogates the meanings that data carries. Communication around data describes moments where data are constructed. By employing multiple perspectives, we might understand how data operate as a complex structure of dominance….(More)”

Best Government Emerging Technologies


Report released at the World Government Summit (Dubai): “… the “Best Government Emerging Technologies” recognises governments that are experimenting with emerging technologies to provide government services more e ciently, e ectively and have proven results showing how they have created greater public value and transformed people›s lives.

For this purpose, the Prime Minister’s Office has joined forces with Indra to analyse and identify 29 Emerging Technologies, grouped in 9 categories that include technologies such as Artificial Intelligence, Blockchain, Cloud Computing, Robotics & Space, Smart Platforms, amongst other.

Wherever possible, case studies have been analysed as example of the use of the technology in public bodies and government, taking into account that some of these technologies may not have been implemented yet in the public sector and therefore have not a ected the lives of citizens. e analysis comprises 73 international case studies from 32 di erent countries.

is document represents an executive summary of the analysis ndings, incorporating a brief description of the main Emerging Technologies where the selected cutting-edge digital technologies are introduced, followed by a number of examples of international case studies in which governments and public bodies have implemented these technologies….

Screen Shot 2017-02-13 at 4.35.40 PM(More)

The chaos of South Africa’s taxi system is being tackled with open data


Lynsey Chutel at Quartz: “On any given day in South Africa’s cities the daily commute can be chaotic and unpredictable. A new open source data platform hopes to bring some order to that—or at least help others get it right.

Contributing to that chaos is a formal public transportation system that is inadequate for a growing urban population and an informal transportation network that whizzes through the streets unregulated. Where Is My Transport has done something unique by finally bringing these two systems together on one map.

Where Is My Transport has mapped Cape Town’s transport systems to create an integrated system, incorporating train, bus and minibus taxi routes. This last one is especially difficult, because the thousands of minibuses that ferry most South Africans are notoriously difficult to pin down.

Minibus taxis seat about 15 people and turn any corner into a bus stop, often halting traffic. They travel within neighborhoods and across the country and are the most affordable means of transport for the majority of South Africans. But they are also often unsafe vehicles, at times involved in horrific road accidents.

Devin De Vries, one of the platform’s co-founders, says he was inspired by the Digital Matatus project in Nairobi. The South African platform differs, however, in that it provides open source information for others who think they may have a solution to South Africa’s troubled public transportation system.

“Transport is a complex ecosystem, and we don’t think any one company will solve it, De Vries told Quartz. “That’s why we made our platform open and hope that many endpoints—apps, websites, et cetera—will draw on the data so people can access it.”

This could lead to trip planning apps like Moovit or Transit for African commuters, or help cities better map their public transportation system, De Vries hopes…(More)”

Big data may be reinforcing racial bias in the criminal justice system


Laurel Eckhouse at the Washington Post: “Big data has expanded to the criminal justice system. In Los Angeles, police use computerized “predictive policing” to anticipate crimes and allocate officers. In Fort Lauderdale, Fla., machine-learning algorithms are used to set bond amounts. In states across the country, data-driven estimates of the risk of recidivism are being used to set jail sentences.

Advocates say these data-driven tools remove human bias from the system, making it more fair as well as more effective. But even as they have become widespread, we have little information about exactly how they work. Few of the organizations producing them have released the data and algorithms they use to determine risk.

 We need to know more, because it’s clear that such systems face a fundamental problem: The data they rely on are collected by a criminal justice system in which race makes a big difference in the probability of arrest — even for people who behave identically. Inputs derived from biased policing will inevitably make black and Latino defendants look riskier than white defendants to a computer. As a result, data-driven decision-making risks exacerbating, rather than eliminating, racial bias in criminal justice.
Consider a judge tasked with making a decision about bail for two defendants, one black and one white. Our two defendants have behaved in exactly the same way prior to their arrest: They used drugs in the same amount, have committed the same traffic offenses, owned similar homes and took their two children to the same school every morning. But the criminal justice algorithms do not rely on all of a defendant’s prior actions to reach a bail assessment — just those actions for which he or she has been previously arrested and convicted. Because of racial biases in arrest and conviction rates, the black defendant is more likely to have a prior conviction than the white one, despite identical conduct. A risk assessment relying on racially compromised criminal-history data will unfairly rate the black defendant as riskier than the white defendant.

To make matters worse, risk-assessment tools typically evaluate their success in predicting a defendant’s dangerousness on rearrests — not on defendants’ overall behavior after release. If our two defendants return to the same neighborhood and continue their identical lives, the black defendant is more likely to be arrested. Thus, the tool will falsely appear to predict dangerousness effectively, because the entire process is circular: Racial disparities in arrests bias both the predictions and the justification for those predictions.

We know that a black person and a white person are not equally likely to be stopped by police: Evidence on New York’s stop-and-frisk policy, investigatory stops, vehicle searches and drug arrests show that black and Latino civilians are more likely to be stopped, searched and arrested than whites. In 2012, a white attorney spent days trying to get himself arrested in Brooklyn for carrying graffiti stencils and spray paint, a Class B misdemeanor. Even when police saw him tagging the City Hall gateposts, they sped past him, ignoring a crime for which 3,598 people were arrested by the New York Police Department the following year.

Before adopting risk-assessment tools in the judicial decision-making process, jurisdictions should demand that any tool being implemented undergo a thorough and independent peer-review process. We need more transparencyand better data to learn whether these risk assessments have disparate impacts on defendants of different races. Foundations and organizations developing risk-assessment tools should be willing to release the data used to build these tools to researchers to evaluate their techniques for internal racial bias and problems of statistical interpretation. Even better, with multiple sources of data, researchers could identify biases in data generated by the criminal justice system before the data is used to make decisions about liberty. Unfortunately, producers of risk-assessment tools — even nonprofit organizations — have not voluntarily released anonymized data and computational details to other researchers, as is now standard in quantitative social science research….(More)”.

Code-Dependent: Pros and Cons of the Algorithm Age


 and  at PewResearch Center: “Algorithms are instructions for solving a problem or completing a task. Recipes are algorithms, as are math equations. Computer code is algorithmic. The internet runs on algorithms and all online searching is accomplished through them. Email knows where to go thanks to algorithms. Smartphone apps are nothing but algorithms. Computer and video games are algorithmic storytelling. Online dating and book-recommendation and travel websites would not function without algorithms. GPS mapping systems get people from point A to point B via algorithms. Artificial intelligence (AI) is naught but algorithms. The material people see on social media is brought to them by algorithms. In fact, everything people see and do on the web is a product of algorithms. Every time someone sorts a column in a spreadsheet, algorithms are at play, and most financial transactions today are accomplished by algorithms. Algorithms help gadgets respond to voice commands, recognize faces, sort photos and build and drive cars. Hacking, cyberattacks and cryptographic code-breaking exploit algorithms. Self-learning and self-programming algorithms are now emerging, so it is possible that in the future algorithms will write many if not most algorithms.

Algorithms are often elegant and incredibly useful tools used to accomplish tasks. They are mostly invisible aids, augmenting human lives in increasingly incredible ways. However, sometimes the application of algorithms created with good intentions leads to unintended consequences. Recent news items tie to these concerns:

State of Open Corporate Data: Wins and Challenges Ahead


Sunlight Foundation: “For many people working to open data and reduce corruption, the past year could be summed up in two words: “Panama Papers.” The transcontinental investigation by a team from International Center of Investigative Journalists (ICIJ) blew open the murky world of offshore company registration. It put corporate transparency high on the agenda of countries all around the world and helped lead to some notable advances in access to official company register data….

While most companies are created and operated for legitimate economic activity,  there is a small percentage that aren’t. Entities involved in corruption, money laundering, fraud and tax evasion frequently use such companies as vehicles for their criminal activity. “The Idiot’s Guide to Money Laundering from Global Witness” shows how easy it is to use layer after layer of shell companies to hide the identity of the person who controls and benefits from the activities of the network. The World Bank’s “Puppet Masters” report found that over 70% of grand corruption cases, in fact, involved the use of offshore vehicles.

For years, OpenCorporates has advocated for company information to be in the public domain as open data, so it is usable and comparable.  It was the public reaction to Panama Papers, however, that made it clear that due diligence requires global data sets and beneficial registries are key for integrity and progress.

The call for accountability and action was clear from the aftermath of the leak. ICIJ, the journalists involved and advocates have called for tougher action on prosecutions and more transparency measures: open corporate registers and beneficial ownership registers. A series of workshops organized by the B20 showed that business also needed public beneficial ownership registers….

Last year the UK became the first country in the world to collect and publish who controls and benefits from companies in a structured format, and as open data. Just a few days later, we were able to add the information in OpenCorporates. The UK data, therefore, is one of a kind, and has been highly anticipated by transparency skeptics and advocates advocates alike. So fa,r things are looking good. 15 other countries have committed to having a public beneficial ownership register including Nigeria, Afghanistan, Germany, Indonesia, New Zealand and Norway. Denmark has announced its first public beneficial ownership data will be published in June 2017. It’s likely to be open data.

This progress isn’t limited to beneficial ownership. It is also being seen in the opening up of corporate registers . These are what OpenCorporates calls “core company data”. In 2016, more countries started releasing company register as open data, including Japan, with over 4.4 million companies, IsraelVirginiaSloveniaTexas, Singapore and Bulgaria. We’ve also had a great start to 2017 , with France publishing their central company database as open data on January 5th.

As more states have embracing open data, the USA jumped from average score of 19/100 to 30/100. Singapore rose from 0 to 20. The Slovak Republic from 20 to 40. Bulgaria wet from 35 to 90.  Japan rose from 0 to 70 — the biggest increase of the year….(More)”

Facebook introduces a way to help your neighbors after a disaster


Casey Newton at the Verge: “Last year Facebook announced Community Help, a new part of its Safety Check feature designed to connect disaster victims with Facebook users in the area who are offering their help. Now whenever Safety Check is activated, Community Help will let users find or offer food, shelter, transportation, and other forms of assistance. After testing the feature in December, Facebook is beginning to roll it out today in the United States, Canada, India, Saudi Arabia, Australia, and New Zealand.

Facebook says Community Help represents a logical next step for Safety Check, which was first announced in November 2014. Initially, each Safety Check was essentially created manually by Facebook’s team.

In November, the company announced that Safety Check would become more automated. Global crisis reporting agencies send Facebook alerts, which it then attempts to match to user posts in a geographic area. When it finds a spike in user posts, coupled with the alert, Facebook activates Safety Check. The company says employees oversee the process to prevent false positives — something it hasn’t always succeeded at doing.

In discussions with relief agencies, Facebook says it found that disaster victims were often coming to Facebook in search of help — or to offer some. In some cases, product designer Preethi Chethan says, they were pasting Facebook posts into spreadsheets to help sort them.

Community Help is designed to make post-disaster matchmaking easier. You’ll find it inside Safety Check — go there in the wake of a calamity, and after marking yourself safe you can create a post seeking or offering help. For starters, Community Help will only be available after natural disasters and accidents….(More)”.