Teaching machines to understand – and summarize – text


 and  in The Conversation: “We humans are swamped with text. It’s not just news and other timely information: Regular people are drowning in legal documents. The problem is so bad we mostly ignore it. Every time a person uses a store’s loyalty rewards card or connects to an online service, his or her activities are governed by the equivalent of hundreds of pages of legalese. Most people pay no attention to these massive documents, often labeled “terms of service,” “user agreement” or “privacy policy.”

These are just part of a much wider societal problem of information overload. There is so much data stored – exabytes of it, as much stored as has ever been spoken by people in all of human history – that it’s humanly impossible to read and interpret everything. Often, we narrow down our pool of information by choosing particular topics or issues to pay attention to. But it’s important to actually know the meaning and contents of the legal documents that govern how our data is stored and who can see it.

As computer science researchers, we are working on ways artificial intelligence algorithms could digest these massive texts and extract their meaning, presenting it in terms regular people can understand….

Examining privacy policies

A modern internet-enabled life today more or less requires trusting for-profit companies with private information (like physical and email addresses, credit card numbers and bank account details) and personal data (photos and videos, email messages and location information).

These companies’ cloud-based systems typically keep multiple copies of users’ data as part of backup plans to prevent service outages. That means there are more potential targets – each data center must be securely protected both physically and electronically. Of course, internet companies recognize customers’ concerns and employ security teams to protect users’ data. But the specific and detailed legal obligations they undertake to do that are found in their impenetrable privacy policies. No regular human – and perhaps even no single attorney – can truly understand them.

In our study, we ask computers to summarize the terms and conditions regular users say they agree to when they click “Accept” or “Agree” buttons for online services. We downloaded the publicly available privacy policies of various internet companies, including Amazon AWS, Facebook, Google, HP, Oracle, PayPal, Salesforce, Snapchat, Twitter and WhatsApp….

Our software examines the text and uses information extraction techniques to identify key information specifying the legal rights, obligations and prohibitions identified in the document. It also uses linguistic analysis to identify whether each rule applies to the service provider, the user or a third-party entity, such as advertisers and marketing companies. Then it presents that information in clear, direct, human-readable statements….(More)”

Slave to the Algorithm? Why a ‘Right to Explanation’ is Probably Not the Remedy You are Looking for


Paper by Lilian Edwards and Michael Veale: “Algorithms, particularly of the machine learning (ML) variety, are increasingly consequential to individuals’ lives but have caused a range of concerns evolving mainly around unfairness, discrimination and opacity. Transparency in the form of a “right to an explanation” has emerged as a compellingly attractive remedy since it intuitively presents as a means to “open the black box”, hence allowing individual challenge and redress, as well as possibilities to foster accountability of ML systems. In the general furore over algorithmic bias and other issues laid out in section 2, any remedy in a storm has looked attractive.

However, we argue that a right to an explanation in the GDPR is unlikely to be a complete remedy to algorithmic harms, particularly in some of the core “algorithmic war stories” that have shaped recent attitudes in this domain. We present several reasons for this conclusion. First (section 3), the law is restrictive on when any explanation-related right can be triggered, and in many places is unclear, or even seems paradoxical. Second (section 4), even were some of these restrictions to be navigated, the way that explanations are conceived of legally — as “meaningful information about the logic of processing” — is unlikely to be provided by the kind of ML “explanations” computer scientists have been developing. ML explanations are restricted both by the type of explanation sought, the multi-dimensionality of the domain and the type of user seeking an explanation. However (section 5) “subject-centric” explanations (SCEs), which restrict explanations to particular regions of a model around a query, show promise for interactive exploration, as do pedagogical rather than decompositional explanations in dodging developers’ worries of IP or trade secrets disclosure.

As an interim conclusion then, while convinced that recent research in ML explanations shows promise, we fear that the search for a “right to an explanation” in the GDPR may be at best distracting, and at worst nurture a new kind of “transparency fallacy”. However, in our final section, we argue that other parts of the GDPR related (i) to other individual rights including the right to erasure (“right to be forgotten”) and the right to data portability and (ii) to privacy by design, Data Protection Impact Assessments and certification and privacy seals, may have the seeds of building a better, more respectful and more user-friendly algorithmic society….(More)”

Facebook Disaster Maps


Molly Jackman et al at Facebook: “After a natural disaster, humanitarian organizations need to know where affected people are located, what resources are needed, and who is safe. This information is extremely difficult and often impossible to capture through conventional data collection methods in a timely manner. As more people connect and share on Facebook, our data is able to provide insights in near-real time to help humanitarian organizations coordinate their work and fill crucial gaps in information during disasters. This morning we announced a Facebook disaster map initiative to help organizations address the critical gap in information they often face when responding to natural disasters.

Facebook disaster maps provide information about where populations are located, how they are moving, and where they are checking in safe during a natural disaster. All data is de-identified and aggregated to a 360 square meter tile or local administrative boundaries (e.g. census boundaries). [1]

This blog describes the disaster maps datasets, how insights are calculated, and the steps taken to ensure that we’re preserving privacy….(More)”.

Citizenship office wants ‘Emma’ to help you


 at FedScoop: “U.S. Citizenship and Immigration Services unveiled a new virtual assistant live-chat service, known as “Emma,” to assist customers and website visitors in finding information and answering questions in a timely and efficient fashion.

The agency told FedScoop that it built the chatbot with the help of Verizon and artificial intelligence interface company Next IT. The goal  is “to address the growing need for customers to obtain information quicker and through multiple access points, USCIS broadened the traditional call center business model to include web-based self-help tools,” the agency says.

USCIS, a component agency of the Department of Homeland Security, says it receives nearly 14 million calls relating to immigration every year. The virtual assistant and live-chat services are aimed at becoming the first line of help available to users of USCIS.gov who might have trouble finding answers by themselves.

The bot greets customers when they enter the website, answers basic questions via live chat and supplies additional information in both English and Spanish. As a result, the amount of time customers spend searching for information on the website is greatly reduced, according to USCIS. Because the virtual assistant is embedded within the website, it can rapidly provide relevant information that may have been difficult to access manually.

The nature of the bot lends itself to potential encounters with personally identifiable information (PII), or PII, of the customers it interacts with. Because of this, USCIS recently conducted a privacy impact assessment (PIA).

Much of the assessment revolved around accuracy and the security of information that Emma could potentially encounter in a customer interaction. For the most part, the chat bot doesn’t require customers to submit personal information. Instead, it draws its responses from content already available on USCIS.gov, relative to the amount of information that users choose to provide. Answers are, according to the PIA, verified by thorough and frequent examination of all content posted to the site.

According to USCIS, the Emma will delete all chat logs — and therefore all PII — immediately after the customer ends the chat session. Should a customer reach a question that it can’t answer effectively and choose to continue the session with an agent in a live chat, the bot will ask for the preferred language (English or Spanish), the general topic of conversation, short comments on why the customer wishes to speak with a live agent, and the case on file and receipt number.

This information would then be transferred to the live agent. All other sensitive information entered, such as Social Security numbers or receipt numbers, would then be automatically masked in the subsequent transfer to the live agent…(More)”

Internet of Things: Status and implications of an increasingly connected world


GAO Technology Assessment: “The Internet of Things (IoT) refers to the technologies and devices that sense information and communicate it to the Internet or other networks and, in some cases, act on that information. These “smart” devices are increasingly being used to communicate and process quantities and types of information that have never been captured before and respond automatically to improve industrial processes, public services, and the well-being of individual consumers. For example, a “connected” fitness tracker can monitor a user’s vital statistics, and store the information on a smartphone. A “smart” tractor can use GPS-based driving guidance to maximize crop planting or harvesting. Electronic processors and sensors have become smaller and less costly, which makes it easier to equip devices with IoT capabilities. This is fueling the global proliferation of connected devices, allowing new technologies to be embedded in millions of everyday products. The IoT’s rapid emergence brings the promise of important new benefits, but also presents potential challenges such as the following:

  • Information security. The IoT brings the risks inherent in potentially unsecured information technology systems into homes, factories, and communities. IoT devices, networks, or the cloud servers where they store data can be compromised in a cyberattack. For example, in 2016, hundreds of thousands of weakly-secured IoT devices were accessed and hacked, disrupting traffic on the Internet.
  • Privacy. Smart devices that monitor public spaces may collect information about individuals without their knowledge or consent. For example, fitness trackers link the data they collect to online user accounts, which generally include personally identifiable information, such as names, email addresses, and dates of birth. Such information could be used in ways that the consumer did not anticipate. For example, that data could be sold to companies to target consumers with advertising or to determine insurance rates.
  • Safety. Researchers have demonstrated that IoT devices such as connected automobiles and medical devices can be hacked, potentially endangering the health and safety of their owners. For example, in 2015, hackers gained remote access to a car through its connected entertainment system and were able to cut the brakes and disable the transmission.
  • Standards. IoT devices and systems must be able to communicate easily. Technical standards to enable this communication will need to be developed and implemented effectively.
  • Economic issues. While impacts such as positive growth for industries that can use the IoT to reduce costs and provide better services to customers are likely, economic disruptions are also possible, such as reducing the need for certain types of businesses and jobs that rely on individual interventions, including assembly line work or commercial vehicle deliveries…(More)”

ALTwitter


ALTwitter” – as in the alternate Twitter is the profiles of the Members of European Parliaments built on their Twitter metadata. In spite of the risks and challenges associated with the privacy of ineffectively regulated metadata, the beauty of the metadata which everyone should appreciate lies in its brevity and flexibility.

When you navigate to the profiles of the members of the parliament listed below, you will notice that these profiles give the essence of their interaction with Twitter and the data that they generate there. Without going through all their tweets, one can learn their areas/topics that they work, the device/mediums they use, the type of websites they refer, their sleeping/activity pattern, etc. The amount insight that can be derived from these metadata is indeed more interesting. We intend to present such artifacts in a separate blog post soon.

This open source project is a part of #hakunametadata series (with the earlier module on browsing metadata) is educate about the immense amount of information contained in the metadata that we generate by our day-to-day internet activities. Every bit of data used for this project is from the publically available information on Twitter. Furthermore, this project will be updated periodically and automatically to track the changes.”…(More)”

Big Data Science: Opportunities and Challenges to Address Minority Health and Health Disparities in the 21st Century


Xinzhi Zhang et al in Ethnicity and Disease: “Addressing minority health and health disparities has been a missing piece of the puzzle in Big Data science. This article focuses on three priority opportunities that Big Data science may offer to the reduction of health and health care disparities. One opportunity is to incorporate standardized information on demographic and social determinants in electronic health records in order to target ways to improve quality of care for the most disadvantaged popula­tions over time. A second opportunity is to enhance public health surveillance by linking geographical variables and social determinants of health for geographically defined populations to clinical data and health outcomes. Third and most impor­tantly, Big Data science may lead to a better understanding of the etiology of health disparities and understanding of minority health in order to guide intervention devel­opment. However, the promise of Big Data needs to be considered in light of significant challenges that threaten to widen health dis­parities. Care must be taken to incorporate diverse populations to realize the potential benefits. Specific recommendations include investing in data collection on small sample populations, building a diverse workforce pipeline for data science, actively seeking to reduce digital divides, developing novel ways to assure digital data privacy for small populations, and promoting widespread data sharing to benefit under-resourced minority-serving institutions and minority researchers. With deliberate efforts, Big Data presents a dramatic opportunity for re­ducing health disparities but without active engagement, it risks further widening them….(More)”

How Your Digital Helper May Undermine Your Welfare, and Our Democracy


Essay by Maurice E. Stucke and Ariel Ezrachi: “All you need to do is say,” a recent article proclaimed, “’I want a beer’ and Alexa will oblige. The future is now.” Advances in technology have seemingly increased our choices and opened markets to competition. As we migrate from brick-and-mortar shops to online commerce, we seemingly are getting more of what we desire at better prices and quality. And yet, behind the competitive façade, a more complex reality exists. We explore in our book “Virtual Competition” several emerging threats, namely algorithmic collusion, behavioural discrimination and abuses by dominant super-platforms. But the harm is not just economic. The potential anticompetitive consequences go beyond our pocketbooks. The toll will likely be on our privacy, well-being and democracy.

To see why, this Essay examines the emerging frontier of digital personal assistants. These helpers are being developed by the leading online platforms: Google Assistant, Apple’s Siri, Facebook’s M, and Amazon’s Alexa-powered Echo. These super-platforms are heavily investing to improve their offerings. For those of us who grew up watching The Jetsons, the prospect of our own personal helper might seem marvelous. And yet, despite their promise, can personalized digital assistants actually reduce our welfare? Might their rise reduce the number of gateways to the digital world, increase the market power of a few firms, and limit competition? And if so, what are the potential social, political, and economic concerns?

Our Essay seeks to address these questions. We show how network effects, big data and big analytics will likely undermine attempts to curtail a digital assistant’s power, and will likely allow it to operate below the regulatory and antitrust radar screens. As a result, rather than advance our overall welfare, these digital assistants – if left to their own devices – can undermine our welfare….(More)”

The U.S. Federal AI Personal Assistant Pilot


/AI-Assistant-Pilot: “Welcome to GSA’s Emerging Citizen Technology program’s pilot for the effective, efficient and accountable introduction and benchmark of public service information integration into consumer-available AI Personal Assistants (IPAs) including Amazon Alexa, Google Assistant, Microsoft Cortana, and Facebook Messenger’s chatbot service — and in the process lay a strong foundation for opening our programs to self-service programs in the home, mobile devices, automobiles and further.

This pilot will require rapid development and will result in public service concepts reviewed by the platforms of your choosing, as well as the creation of a new field of shared resources and recommendations that any organization can use to deliver our program data into these emerging services.

Principles

The demand for more automated, self-service access to United States public services, when and where citizens need them, grows each day—and so do advances in the consumer technologies like Intelligent Personal Assistants designed to meet those challenges.

The U.S. General Services Administration’s (GSA) Emerging Citizen Technology program, part of the Technology Transformation Service’s Innovation Portfolio, launched an open-sourced pilot to guide dozens of federal programs make public service information available to consumer Intelligent Personal Assistants (IPAs) for the home and office, such as Amazon Alexa, Microsoft Cortana, Google Assistant, and Facebook Messenger.

These same services that help power our homes today will empower the self-driving cars of tomorrow, fuel the Internet of Things, and more. As such, the Emerging Citizen Technology program is working with federal agencies to prepare a solid understanding of the business cases and impact of these advances.

From privacy, security, accessibility, and performance to how citizens can benefit from more efficient and open access to federal services, the program is working with federal agencies to consider all aspects of its implementation. Additionally, by sharing openly with private-sector innovators, small businesses, and new entries into the field, the tech industry will gain increased transparency into working with the federal government….(More)”.

Selected Readings on Blockchain Technology and Its Potential for Transforming Governance


By Prianka Srinivasan, Robert Montano, Andrew Young, and Stefaan G. Verhulst

The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of blockchain and governance was originally published in 2017.

Introduction

In 2008, an unknown source calling itself Satoshi Nakamoto released a paper named Bitcoin: A Peer-to-Peer Electronic Cash System which introduced blockchain technology. Blockchain is a novel system that uses a distributed ledger to record transactions and ensure compliance. Blockchain technology relies on an ability to act as a vast, transparent, and secure public database.

It has since gained recognition as a tool to transform governance by creating a decentralized system to

  • manage and protect identity,
  • trace and track; and
  • incentivize smarter social and business contracts.

These applications cast blockchain as a tool to confront certain public problems in the digital age.

The readings below represent selected readings on the applications for governance. They have been categorized by theme – Governance Applications, Identity Protection and ManagementTracing and Tracking, and Smart Contracts.

Selected Reading List

Governance Applications

  • Atzori, Marcella – The Center for Blockchain Technologies (2015) Blockchain Technology and Decentralized Governance: Is the State Still Necessary?  Aims to investigate the political applications of blockchain, particularly in encouraging government decentralization by considering to what extent blockchain can be viewed as “hyper-political tools.” The paper suggests that the domination of private bodies in blockchain systems highlights the continued need for the State to remain as a central point of coordination.
  • Boucher, Philip. – European Parliamentary Research Service (2017) How blockchain technology could change our lives  This report commissioned by the European Parliamentary Research Service provides a deep introduction to blockchain theory and its applications to society and political systems, providing 2 page briefings on currencies, digital content, patents, e-voting, smart contracts, supply chains, and blockchain states.
  • Boucher, Philip. – Euroscientist (2017) Are Blockchain Applications Guided by Social Values?  This report by a policy analyst at the European Parliament’s Scientific foresight unit, evaluates the social and moral contours of blockchain technology, arguing that “all technologies have value and politics,” and blockchain is no exception. Calls for greater scrutiny on the possibility for blockchain to act as a truly distributed and transparent system without a “middleman.”
  • Cheng, Steve;  Daub, Matthew; Domeyer, Axel; and Lundqvist, Martin –McKinsey & Company (2017)  Using Blockchain to Improve Data Management in the Public SectorThis essay considers the potential uses of blockchain technology for the public sector to improve the security of sensitive information collected by governments and as a way to simplify communication with specialists.
  • De Filippi, Primavera; and Wright, Aaron –Paris University & Cordoza School of Law (2015)  Decentralized Blockchain Technology and the Rise of Lex Cryptographia – Looks at how to regulate blockchain technology, particularly given its implications on governance and society. Argues that a new legal framework needs to emerge to take into account the applications of self-executing blockchain technology.
  • Liebenau, Jonathan and Elaluf-Calderwood, Silvia Monica. – London School of Economics & Florida International University (2016) Blockchain Innovation Beyond Bitcoin and Banking. A paper that explores the potential of blockchain technology in financial services and in broader digital applications, considers regulatory possibility and frameworks, and highlights the innovative potential of blockchain.
  • Prpić, John – Lulea University of Technology (2017) Unpacking Blockchains – This short paper provides a brief introduction to the use of Blockchain outside monetary purposes, breaking down its function as a digital ledger and transaction platform.
  • Stark, Josh – Ledger Labs (2016) Making Sense of Blockchain Governance Applications This CoinDesk article discusses, in simple terms, how blockchain technology can be used to accomplish what is called “the three basic functions of governance.”
  • UK Government Chief Scientific Adviser (2016)  Distributed Ledger Technology: Beyond Blockchain – A report from the UK Government that investigates the use of blockchain’s “distributed leger” as a database for governments and other institutions to adopt.

Identity Protection and Management

  • Baars, D.S. – University of Twente (2016Towards Self-Sovereign Identity Using Blockchain Technology.  A study exploring self-sovereign identity – i.e. the ability of users to control their own digital identity – that led to the creation of a new architecture designed for users to manage their digital ID. Called the Decentralized Identity Management System, it is built on blockchain technology and is based on the concept of claim-based identity.
  • Burger, Eric and Sullivan, Clare Linda. – Georgetown University (2016) E-Residency and Blockchain. A case study focused on an Estonian commercial initiative that allows for citizens of any nation to become an “Estonian E-Resident.” This paper explores the legal, policy, and technical implications of the program and considers its impact on the way identity information is controlled and authenticated.
  • Nathan, Oz; Pentland, Alex ‘Sandy’; and Zyskind, Guy – Security and Privacy Workshops (2015) Decentralizing Privacy: Using Blockchain to Protect Personal Data Describes the potential of blockchain technology to create a decentralized personal data management system, making third-party personal data collection redundant.
  • De Filippi, Primavera – Paris University (2016) The Interplay Between Decentralization and Privacy: The Case of Blockchain Technologies  A journal entry that weighs the radical transparency of blockchain technology against privacy concerns for its users, finding that the apparent dichotomy is not as at conflict with itself as it may first appear.

Tracing and Tracking

  • Barnes, Andrew; Brake, Christopher; and Perry, Thomas – Plymouth University (2016) Digital Voting with the use of Blockchain Technology – A report investigating the potential of blockchain technology to overcome issues surrounding digital voting, from voter fraud, data security and defense against cyber attacks. Proposes a blockchain voting system that can safely and robustly manage these challenges for digital voting.
  • The Economist (2015), “Blockchains The Great Chain of Being Sure About Things.”  An exploratory article that explores the potential usefulness of a blockchain-based land registry in places like Honduras and Greece, transaction registries for trading stock, and the creation of smart contracts.
  • Lin, Wendy; McDonnell, Colin; and Yuan, Ben – Massachusetts Institute of Technology (2015)  Blockchains and electronic health records. – Suggests the “durable transaction ledger” fundamental to blockchain has wide applicability in electronic medical record management. Also, evaluates some of the practical shortcomings in implementing the system across the US health industry.

Smart Contracts

  • Iansiti, Marco; and Lakhani, Karim R. – Harvard Business Review (2017) The Truth about Blockchain – A Harvard Business Review article exploring how blockchain technology can create secure and transparent digital contracts, and what effect this may have on the economy and businesses.
  • Levy, Karen E.C. – Engaging Science, Technology, and Society (2017) Book-Smart, Not Street-Smart: Blockchain-Based Smart Contracts and The Social Workings of Law. Article exploring the concept of blockchain-based “smart contracts” – contracts that securely automate and execute obligations without a centralized authority – and discusses the tension between law, social norms, and contracts with an eye toward social equality and fairness.

Annotated Selected Reading List

Cheng, Steve, Matthias Daub, Axel Domeyer, and Martin Lundqvist. “Using blockchain to improve data management in the public sector.” McKinsey & Company. Web. 03 Apr. 2017. http://bit.ly/2nWgomw

  • An essay arguing that blockchain is useful outside of financial institutions for government agencies, particularly those that store sensitive information such as birth and death dates or information about marital status, business licensing, property transfers, and criminal activity.
  • Blockchain technology would maintain the security of such sensitive information while also making it easier for agencies to use and access critical public-sector information.
  • Despite its potential, a significant drawback for use by government agencies is the speed with which blockchain has developed – there are no accepted standards for blockchain technologies or the networks that operate them; and because many providers are start-ups, agencies might struggle to find partners that will have lasting power. Additionally, government agencies will have to remain vigilant to ensure the security of data.
  • Although best practices will take some time to develop, this piece argues that the time is now for experimentation – and that governments would be wise to include blockchain in their strategies to learn what methods work best and uncover how to best unlock the potential of blockchain.

“The Great Chain of Being Sure About Things.” The Economist. The Economist Newspaper, 31 Oct. 2015. Web. 03 Apr. 2017. http://econ.st/1M3kLnr

  • This is an exploratory article written in The Economist that examines the various potential uses of blockchain technology beyond its initial focus on bitcoin:
    • It highlights the potential of blockchain-based land registries as a way to curb human rights abuses and insecurity in much of the world (it specifically cites examples in Greece and Honduras);
    • It also highlights the relative security of blockchain while noting its openness;
    • It is useful as a primer for how blockchain functions as tool for a non-specialist;
    • Discusses “smart contracts” (about which we have linked more research above);
    • Analyzes potential risks;
    • And considers the potential future unlocked by blockchain
  • This article is particularly useful as a primer into the various capabilities and potential of blockchain for interested researchers who may not have a detailed knowledge of the technology or for those seeking for an introduction.

Iansiti, Marco and Lakhani, Karim R. “The Truth About Blockchain.” Harvard Business Review. N.p., 17 Feb. 2017. Web. 06 Apr. 2017. http://bit.ly/2hqo3FU

  • This entry into the Harvard Business Review discusses blockchain’s ability to solve the gap between emerging technological progress and the outdated ways in which bureaucracies handle and record contracts and transactions.
  • Blockchain, the authors argue, allows us to imagine a world in which “contracts are embedded in digital code and stored in transparent, shared databases, where they are protected from deletion, tampering, and revision”, allowing for the removal of intermediaries and facilitating direct interactions between individuals and institutions.
  • The authors compare the emergence of blockchain to other technologies that have had transformative power, such as TCP/IP, and consider the speed with which they have proliferated and become mainstream.
    • They argue that like TCP/IP, blockchain is likely decades away from maximizing its potential and offer frameworks for the adoption of the technology involving both single-use, localization, substitution, and transformation.
    • Using these frameworks and comparisons, the authors present an investment strategy for those interested in blockchain.

IBM Global Business Services Public Sector Team. “Blockchain: The Chain of Trust and its Potential to Transform Healthcare – Our Point of View.” IBM. 2016. http://bit.ly/2oBJDLw

  • This enthusiastic business report from IBM suggests that blockchain technology can be adopted by the healthcare industry to “solve” challenges healthcare professionals face. This is primarily achieved by blockchain’s ability to streamline transactions by establishing trust, accountability, and transparency.
  • Structured around so-called “pain-points” in the healthcare industry, and how blockchain can confront them, the paper looks at 3 concepts and their application in the healthcare industry:
    • Bit-string cryptography: Improves privacy and security concerns in healthcare, by supporting data encryption and enforces complex data permission systems. This allows healthcare professionals to share data without risking the privacy of patients. It also streamlines data management systems, saving money and improving efficiency.
    • Transaction Validity: This feature promotes the use of electronic prescriptions by allowing transactional trust and authenticated data exchange. Abuse is reduced, and abusers are more easily identified.
    • Smart contracts: This streamlines the procurement and contracting qualms in healthcare by reducing intermediaries. Creates a more efficient and transparent healthcare system.
  • The paper goes on to signal the limitations of blockchain in certain use cases (particularly in low-value, high-volume transactions) but highlights 3 use cases where blockchain can help address a business problem in the healthcare industry.
  • Important to keep in mind that, since this paper is geared toward business applications of blockchain through the lens of IBM’s investments, the problems are drafted as business/transactional problems, where blockchain primarily improves efficiency than supporting patient outcomes.

Nathan, Oz; Pentland, Alex ‘Sandy’; and Zyskind, Guy “Decentralizing Privacy: Using Blockchain to Protect Personal Data” Security and Privacy Workshops (SPW). 2015. http://bit.ly/2nPo4r6

  • This technical paper suggests that anonymization and centralized systems can never provide complete security for personal data, and only blockchain technology, by creating a decentralized data management system, can overcome these privacy issues.
  • The authors identify 3 common privacy concerns that blockchain technology can address:
    • Data ownership: users want to own and control their personal data, and data management systems must acknowledge this.
    • Data transparency and auditability: users want to know what data is been collected and for what purpose.
    • Fine-grained access control: users want to be able to easily update and adapt their permission settings to control how and when third-party organizations access their data.
  • The authors propose their own system designed for mobile phones which integrates blockchain technology to store data in a reliable way. The entire system uses blockchain to store data, verify users through a digital signature when they want to access data, and creates a user interface that individuals  can access to view their personal data.
  • Though much of the body of this paper includes technical details on the setup of this blockchain data management system, it provides a strong case for how blockchain technology can be practically implemented to assuage privacy concerns among the public. The authors highlight that by using blockchain “laws and regulations could be programmed into the blockchain itself, so that they are enforced automatically.” They ultimately conclude that using blockchain in such a data protection system such as the one they propose is easier, safer, and more accountable.

Wright, Aaron, and Primavera De Filippi. “Decentralized blockchain technology and the rise of lex cryptographia.” 2015. Available at SSRN http://bit.ly/2oujvoG

  • This paper proposes that the emergence of blockchain technology, and its various applications (decentralized currencies, self-executing contracts, smart property etc.), will necessitate the creation of a new subset of laws, termed by the authors as “Lex Cryptographia.”
  • Considering the ability for blockchain to “cut out the middleman” there exist concrete challenges to law enforcement faced by the coming digital revolution brought by the technology. These encompass the very benefits of blockchain; for instance, the authors posit that the decentralized, autonomous nature of blockchain systems can act much like “a biological virus or an uncontrollable force of nature” if the system was ill-intentioned. Though this same system can regulate the problems of corruption and hierarchy associated with traditional, centralized systems, their autonomy poses an obvious obstacle for law-enforcement.
  • The paper goes on to details all the possible benefits and societal impacts of various applications of blockchain, finally suggesting there exists a need to “rethink” traditional models of regulating society and individuals. They predict a rise in Lex Cryptographia “characterized by a set of rules administered through self-executing smart contracts and decentralized (and potentially autonomous) organizations.” Much of these regulations depend upon the need to supervise restrictions placed upon blockchain technology that may chill its application, for instance corporations who may choose to purposefully avoid including any blockchain-based applications in their search engines so as to stymie the adoption of this technology.