Experimentation spaces for regulatory learning


Staff Working Document by the European Commission: “..one of the actions of the New European Innovation Agenda sets out available experimentation tools (especially regulatory sandboxes, but also testbeds and living labs) and showcases existing examples from Europe and beyond on how the European Union and national governments can support and engage innovators in the regulatory process.

Experimentation is a key-component of innovation. European innovators are facing new challenges, also in terms of different or limited experimentation spaces and related regulations.

The Staff Working Document presents a general overview on these experimentation spaces and includes a special focus on the energy sector, in line with the RePowerEU Communication.

The New European Innovation Agenda, adopted on 5 July 2022, aims to position Europe at the forefront of the new wave of deep tech innovation and start-ups. It will help Europe to develop new technologies to address the most pressing societal challenges, and to bring them on the market. Europe wants to be the place where the best talent work hand in hand with the best companies and where deep tech innovation thrives and creates breakthrough innovative solutions across the continent.

One of the five flagships of the New European Innovation Agenda refers to “enabling deep tech innovation through experimentation spaces and public procurement. It includes this guidance document on experimentation spaces as one of the main deliverables, together with a revised state aid framework for Research and Development, experimentation facilities for AI innovation and the setting-up of an “Innovation Friendly Regulations Advisory Group” working on virtual worlds.  

Regulatory sandboxes are schemes that enable testing innovations in a controlled real world environment, that may include temporary loosening of applicable rules while safeguarding regulatory objectives such as safety and consumer protection.

Test beds are experimentation spaces with a technological focus that do not necessarily have a regulatory component.

Living labs are based on co-creation and on the experience and involvement of users and citizens…(More)”.

Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril


Special Publication by the National Academy of Medicine (NAM): “The emergence of artificial intelligence (AI) in health care offers unprecedented opportunities to improve patient and clinical team outcomes, reduce costs, and impact population health. While there have been a number of promising examples of AI applications in health care, it is imperative to proceed with caution or risk the potential of user disillusionment, another AI winter, or further exacerbation of existing health- and technology-driven disparities.

This Special Publication synthesizes current knowledge to offer a reference document for relevant health care stakeholders. It outlines the current and near-term AI solutions; highlights the challenges, limitations, and best practices for AI development, adoption, and maintenance; offers an overview of the legal and regulatory landscape for AI tools designed for health care application; prioritizes the need for equity, inclusion, and a human rights lens for this work; and outlines key considerations for moving forward.

AI is poised to make transformative and disruptive advances in health care, but it is prudent to balance the need for thoughtful, inclusive health care AI that plans for and actively manages and reduces potential unintended consequences, while not yielding to marketing hype and profit motives…(More)”

Primer on Data Sharing


Primer by John Ure: “…encapsulates insights gleaned from the Inter-Modal Transport Data Sharing Programme, a collaborative effort known as Data Trust 1.0 (DT1), conducted in Hong Kong between 2020 and 2021. This initiative was a pioneering project that explored the feasibility of sharing operational data between public transport entities through a Trusted Third Party. The objective was to overcome traditional data silos and promote evidence-based public transport planning.

DT1, led by the ‘HK Team’ in conjunction with Dr. Jiangping Zhou and colleagues from the University of Hong Kong, successfully demonstrated that data sharing between public transport companies, both privately-owned and government-owned, was viable. Operational data, anonymised and encrypted, were shared with a Trusted Third Party and aggregated for analysis, supported by a Transport Data Analytics Service Provider. The data was used solely for analysis purposes, and confidentiality was maintained throughout.

The establishment of the Data Trust was underpinned by the creation of a comprehensive Data Sharing Framework (DSF). This framework, developed collaboratively, laid the groundwork for future data sharing endeavours. The DSF has been shared internationally, fostering the exchange of knowledge and best practices across diverse organisations and agencies. The Guide serves as a repository of lessons learned, accessible studies, and references, aimed at facilitating a comprehensive understanding of data sharing methodologies.

The central aim of the Guide is twofold: to promote self-learning and to offer clarity on intricate approaches related to data sharing. Its intention is to encourage researchers, governmental bodies, commercial enterprises, and civil society entities, including NGOs, to actively engage in data sharing endeavours. By combining data sets, these stakeholders can glean enhanced insights and contribute to the common good…(More)”.

Creating public sector value through the use of open data


Summary paper prepared as part of data.europa.eu: “This summary paper provides an overview of the different stakeholder activities undertaken, ranging from surveys to a focus group, and presents the key insights from this campaign regarding data reuse practices, barriers to data reuse in the public sector and suggestions to overcome these barriers. The following recommendations are made to help data.europa.eu support public administrations to boost open data value creation.

  • When it comes to raising awareness and communication, any action should also contain examples of data reuse by the public sector. Gathering and communicating such examples and use cases greatly helps in understanding the importance of the role of the public sector as a data reuser
  • When it comes to policy and regulation, it would be beneficial to align the ‘better regulation’ activities and roadmaps of the European Commission with the open data publication activities, in order to better explore the internal data needs. Furthermore, it would be helpful to facilitate a similar alignment and data needs analysis for all European public administrations. For example, this could be done by providing examples, best practices and methodologies on how to map data needs for policy and regulatory purposes.
  • Existing monitoring activities, such as surveys, should be revised to ensure that data reuse by the public sector is included. It would be useful to create a panel of users, based on the existing wide community, that could be used for further surveys.
  • The role of data stewards remains central to favouring reuse. Therefore, examples, best practices and methodologies on the role of data stewards should be included in the support activities – not specifically for public sector reusers, but in general…(More)”.

Data Collaboratives: Enabling a Healthy Data Economy Through Partnerships


Paper by Stefaan Verhulst (as Part of the Digital Revolution and New Social Contract Program): “…Overcoming data silos is key to addressing these data asymmetries and promoting a healthy data economy. This is equally true of silos that exist within sectors as it is of those among sectors (e.g., between the public and private sectors). Today, there is a critical mismatch between data supply and demand. The data that could be most useful rarely gets applied to the social, economic, cultural, and political problems it could help solve. Data silos, driven in large part by deeply entrenched asymmetries and a growing sense of “ownership,” are stunting the public good potential of data.

This paper presents a framework for responsible data sharing and reuse that could increase sharing between the public and private sectors to address some of the most entrenched asymmetries. Drawing on theoretical and empirical material, we begin by outlining how a period of rapid datafication—the Era of the Zettabyte—has led to data asymmetries that are increasingly deleterious to the public good. Sections II and III are normative. Having outlined the nature and scope of the problem, we present a number of steps and recommendations that could help overcome or mitigate data asymmetries. In particular, we focus on one institutional structure that has proven particularly promising: data collaboratives, an emerging model for data sharing between sectors. We show how data collaboratives could ease the flow of data between the public and private sectors, helping break down silos and ease asymmetries. Section II offers a conceptual overview of data collaboratives, while Section III provides an approach to operationalizing data collaboratives. It presents a number of specific mechanisms to build a trusted sharing ecology….(More)”.

Inclusive Cyber Policy Making


Toolkit by Global Digital Partnership: “Marginalised perspectives, particularly from women and LGBTQ+ communities, are largely absent in current cyber norm discussions. This is a serious issue, as marginalised groups often face elevated and specific threats in cyberspace

Our bespoke toolkit provides policymakers and other stakeholders with a range of resources to address this lack of inclusion, including:

  • A how-to guide on developing an inclusive process to develop a cybernorm or implement existing agreed norms
  • An introduction to key terms and concepts relevant to inclusivity and cybernorms
  • Key questions for facilitating inclusive stakeholder mapping processes
  • A mapping of regional and global cybernorm processes…(More)”.

Leveraging Social Media Data for Emergency Preparedness and Response


Report by the National Academies of Sciences, Engineering, and Medicine: “Most state departments of transportation (DOTs) use social media to broadcast information and monitor emergencies, but few rely heavily on social media data. The most common barriers to using social media for emergencies are personnel availability and training, privacy issues, and data reliability.

NCHRP Synthesis 610: Leveraging Social Media Data for Emergency Preparedness and Response, from TRB’s National Cooperative Highway Research Program, documents state DOT practices that leverage social media data for emergency preparedness, response, and recovery…(More)”.

Cross-Border Data Policy Index


Report by the Global Data Alliance: “The ability to responsibly transfer data around the globe supports cross-border economic opportunity, cross-border technological and scientific progress, and cross-border digital transformation and inclusion, among other public policy objectives. To assess where policies have helped create an enabling environment for cross-border data and its associated benefits, the Global Data Alliance has developed the Cross-Border Data Policy Index.

The Cross-Border Data Policy Index offers a quantitative and qualitative assessment of the relative openness or restrictiveness of cross-border data policies across nearly 100 economies. Global economies are classified into four levels. At Level 1 are economies that impose relatively fewer limits on the cross-border access to knowledge, information, digital tools, and economic opportunity for their citizens and legal persons. Economies’ restrictiveness scores increase as they are found to impose greater limits on cross-border data, thereby eroding opportunities for digital transformation while also impeding other policy objectives relating to health, safety, security, and the environment…(More)”.

Unleashing the power of data for electric vehicles and charging infrastructure


Report by Thomas Deloison: “As the world moves toward widespread electric vehicle (EV) adoption, a key challenge lies ahead: deploying charging infrastructure rapidly and effectively. Solving this challenge will be essential to decarbonize transport, which has a higher reliance on fossil fuels than any other sector and accounts for a fifth of global carbon emissions. However, the companies and governments investing in charging infrastructure face significant hurdles, including high initial capital costs and difficulties related to infrastructure planning, permitting, grid connections and grid capacity development.

Data has the power to facilitate these processes: increased predictability and optimized planning and infrastructure management go a long way in easing investments and accelerating deployment. Last year, members of the World Business Council for Sustainable Development (WBCSD) demonstrated that digital solutions based on data sharing could reduce carbon emissions from charging by 15% and unlock crucial grid capacity and capital efficiency gains.

Exceptional advances in data, analytics and connectivity are making digital solutions a potent tool to plan and manage transport, energy and infrastructure. Thanks to the deployment of sensors and the rise of connectivity,  businesses are collecting information faster than ever before, allowing for data flows between physical assets. Charging infrastructure operators, automotive companies, fleet operators, energy providers, building managers and governments collect insights on all aspects of electric vehicle charging infrastructure (EVCI), from planning and design to charging experiences at the station.

The real value of data lies in its aggregationThis will require breaking down siloes across industries and enabling digital collaboration. A digital action framework released by WBCSD, in collaboration with Arcadis, Fujitsu and other member companies and partners, introduces a set of recommendations for companies and governments to realize the full potential of digital solutions and accelerate EVCI deployments:

  • Map proprietary data, knowledge gaps and digital capacity across the value chain to identify possible synergies. The highest value potential from digital solutions will lie at the nexus of infrastructure, consumer behavior insights, grid capacity and transport policy. For example, to ensure the deployment of charging stations where they will be most needed and at the right capacity level, it is crucial to plan investments within energy grid capacity, spatial constraints and local projected demand for EVs.
  • Develop internal data collection and storage capacity with due consideration for existing structures for data sharing. A variety of schemes allow actors to engage in data sharing or monetization. Yet, their use is limited by mismatched use of data standards and specification and process uncertainty. Companies must build a strong understanding of these structures internally by providing internal training and guidance, and invest in sound data collection, storage and analysis capacity.
  • Foster a policy environment that supports digital collaboration across sectors and industries. Digital policies must provide incentives and due diligence frameworks to guide data exchanges across industries and support the adoption of common standards and protocols. For instance, it will be crucial to integrate linkages with energy systems and infrastructure beyond roads in the rollout of the European mobility data space…(More)”.

Building Responsive Investments in Gender Equality using Gender Data System Maturity Models


Tools and resources by Data2X and Open Data Watch: “.. to help countries check the maturity of their gender data systems and set priorities for gender data investments. The new Building Responsive Investments in Data for Gender Equality (BRIDGE) tool is designed for use by gender data focal points in national statistical offices (NSOs) of low- and middle- income countries and by their partners within the national statistical system (NSS) to communicate gender data priorities to domestic sources of financing and international donors.

The BRIDGE results will help gender data stakeholders understand the current maturity level of their gender data system, diagnose strengths and weaknesses, and identify priority areas for improvement. They will also serve as an input to any roadmap or action plan developed in collaboration with key stakeholders within the NSS.

Below are links to and explanations of our ‘Gender Data System Maturity Model’ briefs (a long and short version), our BRIDGE assessment and tools methodology, how-to guide, questionnaire, and scoring form that will provide an overall assessment of system maturity and insight into potential action plans to strengthen gender data systems…(More)”.