Towards an information systems perspective and research agenda on crowdsourcing for innovation
New paper by A Majchrzak and A Malhotra in The Journal of Strategic Information Systems: “Recent years have seen an increasing emphasis on open innovation by firms to keep pace with the growing intricacy of products and services and the ever changing needs of the markets. Much has been written about open innovation and its manifestation in the form of crowdsourcing. Unfortunately, most management research has taken the information system (IS) as a given. In this essay we contend that IS is not just an enabler but rather can be a shaper that optimizes open innovation in general and crowdsourcing in particular. This essay is intended to frame crowdsourcing for innovation in a manner that makes more apparent the issues that require research from an IS perspective. In doing so, we delineate the contributions that the IS field can make to the field of crowdsourcing.
-
Reviews participation architectures supporting current crowdsourcing, finding them inadequate for innovation development by the crowd.
-
Identifies 3 tensions for explaining why a participation architecture for crowdsourced innovation is difficult.
-
Identifies affordances for the participation architectures that may help to manage the tension.
-
Uses the tensions and possible affordances to identify research questions for IS scholars.”
Commons at the Intersection of Peer Production, Citizen Science, and Big Data: Galaxy Zoo
Are Some Tweets More Interesting Than Others? #HardQuestion
New paper by Microsoft Research (Omar Alonso, Catherine C. Marshall, and Marc Najork): “Twitter has evolved into a significant communication nexus, coupling personal and highly contextual utterances with local news, memes, celebrity gossip, headlines, and other microblogging subgenres. If we take Twitter as a large and varied dynamic collection, how can we predict which tweets will be interesting to a broad audience in advance of lagging social indicators of interest such as retweets? The telegraphic form of tweets, coupled with the subjective notion of interestingness, makes it difficult for human judges to agree on which tweets are indeed interesting.
In this paper, we address two questions: Can we develop a reliable strategy that results in high-quality labels for a collection of tweets, and can we use this labeled collection to predict a tweet’s interestingness?
To answer the first question, we performed a series of studies using crowdsourcing to reach a diverse set of workers who served as a proxy for an audience with variable interests and perspectives. This method allowed us to explore different labeling strategies, including varying the judges, the labels they applied, the datasets, and other aspects of the task.
To address the second question, we used crowdsourcing to assemble a set of tweets rated as interesting or not; we scored these tweets using textual and contextual features; and we used these scores as inputs to a binary classifier. We were able to achieve moderate agreement (kappa = 0.52) between the best classifier and the human assessments, a figure which reflects the challenges of the judgment task.”
Defining Open Data
As the open data movement grows, and even more governments and organisations sign up to open data, it becomes ever more important that there is a clear and agreed definition for what “open data” means if we are to realise the full benefits of openness, and avoid the risks of creating incompatibility between projects and splintering the community.
Open can apply to information from any source and about any topic. Anyone can release their data under an open licence for free use by and benefit to the public. Although we may think mostly about government and public sector bodies releasing public information such as budgets or maps, or researchers sharing their results data and publications, any organisation can open information (corporations, universities, NGOs, startups, charities, community groups and individuals).
Read more about different kinds of data in our one page introduction to open data
There is open information in transport, science, products, education, sustainability, maps, legislation, libraries, economics, culture, development, business, design, finance …. So the explanation of what open means applies to all of these information sources and types. Open may also apply both to data – big data and small data – or to content, like images, text and music!
So here we set out clearly what open means, and why this agreed definition is vital for us to collaborate, share and scale as open data and open content grow and reach new communities.
What is Open?
The full Open Definition provides a precise definition of what open data is. There are 2 important elements to openness:
- Legal openness: you must be allowed to get the data legally, to build on it, and to share it. Legal openness is usually provided by applying an appropriate (open) license which allows for free access to and reuse of the data, or by placing data into the public domain.
- Technical openness: there should be no technical barriers to using that data. For example, providing data as printouts on paper (or as tables in PDF documents) makes the information extremely difficult to work with. So the Open Definition has various requirements for “technical openness,” such as requiring that data be machine readable and available in bulk.”…
The role of task difficulty in the effectiveness of collective intelligence
New article by Christian Wagner: “The article presents a framework and empirical investigation to demonstrate the role of task difficulty in the effectiveness of collective intelligence. The research contends that collective intelligence, a form of community engagement to address problem solving tasks, can be superior to individual judgment and choice, but only when the addressed tasks are in a range of appropriate difficulty, which we label the “collective range”. Outside of that difficulty range, collectives will perform about as poorly as individuals for high difficulty tasks, or only marginally better than individuals for low difficulty tasks. An empirical investigation with subjects randomly recruited online supports our conjecture. Our findings qualify prior research on the strength of collective intelligence in general and offer preliminary insights into the mechanisms that enable individuals and collectives to arrive at good solutions. Within the framework of digital ecosystems, the paper argues that collective intelligence has more survival strength than individual intelligence, with highest sustainability for tasks of medium difficulty”
A New Kind of Economy is Born – Social Decision-Makers Beat the "Homo Economicus"
A new paper by Dirk Helbing: “The Internet and Social Media change our way of decision-making. We are no longer the independent decision makers we used to be. Instead, we have become networked minds, social decision-makers, more than ever before. This has several fundamental implications. First of all, our economic theories must change, and second, our economic institutions must be adapted to support the social decision-maker, the “homo socialis”, rather than tailored to the perfect egoist, known as “homo economicus”….
Such developments will eventually create a participatory market society. “Prosumers”, i.e. co-producing consumers, the new “makers” movement, and the sharing economy are some examples illustrating this. Just think of the success of Wikipedia, Open Streetmap or Github. Open Streetmap now provides the most up-to-date maps of the world, thanks to more than 1 million volunteers.
This is just the beginning of a new era, where production and public engagement will more and more happen in a bottom up way through fluid “projects”, where people can contribute as a leaders (“entrepreneurs”) or participants. A new intellectual framework is emerging, and a creative and participatory era is ahead.
The paradigm shift towards participatory bottom-up self-regulation may be bigger than the paradigm shift from a geocentric to a heliocentric worldview. If we build the right institutions for the information society of the 21st century, we will finally be able to mitigate some very old problems of humanity. “Tragedies of the commons” are just one of them. After so many centuries, they are still plaguing us, but this needn’t be.”
Social media analytics for future oriented policy making
New paper by Verena Grubmüller, Katharina Götsch, and Bernhard Krieger: “Research indicates that evidence-based policy making is most successful when public administrators refer to diversified information portfolios. With the rising prominence of social media in the last decade, this paper argues that governments can benefit from integrating this publically available, user-generated data through the technique of social media analytics (SMA). There are already several initiatives set up to predict future policy issues, e.g. for the policy fields of crisis mitigation or migrant integration insights. The authors analyse these endeavours and their potential for providing more efficient and effective public policies. Furthermore, they scrutinise the challenges to governmental SMA usage in particular with regards to legal and ethical aspects. Reflecting the latter, this paper provides forward-looking recommendations on how these technologies can best be used for future policy making in a legally and ethically sound manner.”
Undefined By Data: A Survey of Big Data Definitions
Using Participatory Crowdsourcing in South Africa to Create a Safer Living Environment
The study illustrates how participatory crowdsourcing (specifically humans as sensors) can be used as a Smart City initiative focusing on public safety by illustrating what is required to contribute to the Smart City, and developing a roadmap in the form of a model to assist decision making when selecting an optimal crowdsourcing initiative. Public safety data quality criteria were developed to assess and identify the problems affecting data quality.
This study is guided by design science methodology and applies three driving theories: the Data Information Knowledge Action Result (DIKAR) model, the characteristics of a Smart City, and a credible Data Quality Framework. Four critical success factors were developed to ensure high quality public safety data is collected through participatory crowdsourcing utilising voice technologies.”