Quantifying collective intelligence in human groups


Paper by Christoph Riedl et al: “Collective intelligence (CI) is critical to solving many scientific, business, and other problems, but groups often fail to achieve it. Here, we analyze data on group performance from 22 studies, including 5,279 individuals in 1,356 groups. Our results support the conclusion that a robust CI factor characterizes a group’s ability to work together across a diverse set of tasks. We further show that CI is predicted by the proportion of women in the group, mediated by average social perceptiveness of group members, and that it predicts performance on various out-of-sample criterion tasks. We also find that, overall, group collaboration process is more important in predicting CI than the skill of individual members….(More)”.

Open data in digital strategies against COVID-19: the case of Belgium


Paper by Robert Viseur: “COVID-19 has highlighted the importance of digital in the fight against the pandemic (control at the border, automated tracing, creation of databases…). In this research, we analyze the Belgian response in terms of open data. First, we examine the open data publication strategy in Belgium (a federal state with a sometimes complex functioning, especially in health), second, we conduct a case study (anatomy of the pandemic in Belgium) in order to better understand the strengths and weaknesses of the main COVID-19 open data repository. And third, we analyze the obstacles to open data publication. Finally, we discuss the Belgian COVID-19 open data strategy in terms of data availability, data relevance and knowledge management. In particular, we show how difficult it is to optimize the latter in order to make the best use of governmental, private and academic open data in a way that has a positive impact on public health policy….(More)”.

How Could Smart Cities Use Data? – Towards a Taxonomy of Data-Driven Smart City Projects


Paper by Babett Kühne and Kai Heidel: “The process of urbanization has caused a huge growth in cities all over the world. This development makes the organization and infrastructure of an individual city increasingly important. In this context, the idea of a smart city is growing and smart city projects are beginning to appear. As the amount of data is growing with connected technologies, such projects rely on data as a key resource. However, current research does not provide an overview on these projects and which constructs are involved in data-driven smart city projects. Therefore, this research begins the building of a taxonomy on such projects through the establishment of a common language among researchers in this new field through eleven dimensions. Additionally, it develops a concrete conceptualization of data-driven smart city projects for practitioners as an initial guidance for the field of smart cities….(More)”.

The AI gambit: leveraging artificial intelligence to combat climate change—opportunities, challenges, and recommendations


Paper by Josh Cowls, Andreas Tsamados, Mariarosaria Taddeo & Luciano Floridi: “In this article, we analyse the role that artificial intelligence (AI) could play, and is playing, to combat global climate change. We identify two crucial opportunities that AI offers in this domain: it can help improve and expand current understanding of climate change, and it can contribute to combatting the climate crisis effectively. However, the development of AI also raises two sets of problems when considering climate change: the possible exacerbation of social and ethical challenges already associated with AI, and the contribution to climate change of the greenhouse gases emitted by training data and computation-intensive AI systems. We assess the carbon footprint of AI research, and the factors that influence AI’s greenhouse gas (GHG) emissions in this domain. We find that the carbon footprint of AI research may be significant and highlight the need for more evidence concerning the trade-off between the GHG emissions generated by AI research and the energy and resource efficiency gains that AI can offer. In light of our analysis, we argue that leveraging the opportunities offered by AI for global climate change whilst limiting its risks is a gambit which requires responsive, evidence-based, and effective governance to become a winning strategy. We conclude by identifying the European Union as being especially well-placed to play a leading role in this policy response and provide 13 recommendations that are designed to identify and harness the opportunities of AI for combatting climate change, while reducing its impact on the environment….(More)”.

Economic Data Engineering


Paper by Andrew Caplin: “Economic data engineering deliberately designs novel forms of data to solve fundamental identification problems associated with economic models of choice. I outline three diverse applications: to the economics of information; to life-cycle employment, earnings, and spending; and to public policy analysis. In all three cases one and the same fundamental identification problem is driving data innovation: that of separately identifying appropriately rich preferences and beliefs. In addition to presenting these conceptually linked examples, I provide a general overview of the engineering process, outline important next steps, and highlight larger opportunities…(More)”.

Who do the people want to govern?


Paper by John R Hibbing et al: “Relative to the well-developed theory and extensive survey batteries on people’s preferences for substantive policy solutions, scholarly understanding of people’s preferences for the mechanisms by which policies should be adopted is disappointing. Theory rarely goes beyond the assumption that people would prefer to rule themselves rather than leave decisions up to elites and measurement rests largely on four items that are not up to the task. In this article, we seek to provide a firmer footing for “process” research by 1) offering an alternative theory holding that people actually want elites to continue to make important political decisions but want them to do so only after acquiring a deep appreciation for the real-world problems facing regular people, and 2) developing and testing a battery of over 50 survey items, appropriate for cross-national research, that extend understanding of how the people want political decisions to be made…(More)”.

For a heterodox computational social science


Paper by Petter Törnberg and Justus Uitermark: “The proliferation of digital data has been the impetus for the emergence of a new discipline for the study of social life: ‘computational social science’. Much research in this field is founded on the premise that society is a complex system with emergent structures that can be modeled or reconstructed through digital data. This paper suggests that computational social science serves practical and legitimizing functions for digital capitalism in much the same way that neoclassical economics does for neoliberalism. In recognition of this homology, this paper develops a critique of the complexity perspective of computational social science and argues for a heterodox computational social science founded on the meta-theory of critical realism that is critical, methodological pluralist, interpretative and explanative. This implies diverting computational social science’ computational methods and digital data so as to not be aimed at identifying invariant laws of social life, or optimizing state and corporate practices, but to instead be used as part of broader research strategies to identify contingent patterns, develop conjunctural explanations, and propose qualitatively different ways of organizing social life….(More)”.

Slowed canonical progress in large fields of science


Paper by Johan S. G. Chu and James A. Evans: “The size of scientific fields may impede the rise of new ideas. Examining 1.8 billion citations among 90 million papers across 241 subjects, we find a deluge of papers does not lead to turnover of central ideas in a field, but rather to ossification of canon. Scholars in fields where many papers are published annually face difficulty getting published, read, and cited unless their work references already widely cited articles. New papers containing potentially important contributions cannot garner field-wide attention through gradual processes of diffusion. These findings suggest fundamental progress may be stymied if quantitative growth of scientific endeavors—in number of scientists, institutes, and papers—is not balanced by structures fostering disruptive scholarship and focusing attention on novel ideas…(More)”.

Addressing bias in big data and AI for health care: A call for open science


Paper by Natalia Norori et al: “Bias in the medical field can be dissected along with three directions: data-driven, algorithmic, and human. Bias in AI algorithms for health care can have catastrophic consequences by propagating deeply rooted societal biases. This can result in misdiagnosing certain patient groups, like gender and ethnic minorities, that have a history of being underrepresented in existing datasets, further amplifying inequalities.

Open science practices can assist in moving toward fairness in AI for health care. These include (1) participant-centered development of AI algorithms and participatory science; (2) responsible data sharing and inclusive data standards to support interoperability; and (3) code sharing, including sharing of AI algorithms that can synthesize underrepresented data to address bias. Future research needs to focus on developing standards for AI in health care that enable transparency and data sharing, while at the same time preserving patients’ privacy….(More)”.

Figure thumbnail gr1

Beyond the individual: governing AI’s societal harm


Paper by Nathalie A. Smuha: “In this paper, I distinguish three types of harm that can arise in the context of artificial intelligence (AI): individual harm, collective harm and societal harm. Societal harm is often overlooked, yet not reducible to the two former types of harm. Moreover, mechanisms to tackle individual and collective harm raised by AI are not always suitable to counter societal harm. As a result, policymakers’ gap analysis of the current legal framework for AI not only risks being incomplete, but proposals for new legislation to bridge these gaps may also inadequately protect societal interests that are adversely impacted by AI. By conceptualising AI’s societal harm, I argue that a shift in perspective is needed beyond the individual, towards a regulatory approach of AI that addresses its effects on society at large. Drawing on a legal domain specifically aimed at protecting a societal interest—environmental law—I identify three ‘societal’ mechanisms that EU policymakers should consider in the context of AI. These concern (1) public oversight mechanisms to increase accountability, including mandatory impact assessments with the opportunity to provide societal feedback; (2) public monitoring mechanisms to ensure independent information gathering and dissemination about AI’s societal impact; and (3) the introduction of procedural rights with a societal dimension, including a right to access to information, access to justice, and participation in public decision-making on AI, regardless of the demonstration of individual harm. Finally, I consider to what extent the European Commission’s new proposal for an AI regulation takes these mechanisms into consideration, before offering concluding remarks….(More)”.