Charles Schmidt at Nature: “Conventional influenza surveillance describes outbreaks of flu that have already happened. It is based on reports from doctors, and produces data that take weeks to process — often leaving the health authorities to chase the virus around, rather than get on top of it.
But every day, thousands of unwell people pour details of their symptoms and, perhaps unknowingly, locations into search engines and social media, creating a trove of real-time flu data. If such data could be used to monitor flu outbreaks as they happen and to make accurate predictions about its spread, that could transform public-health surveillance.
Powerful computational tools such as machine learning and a growing diversity of data streams — not just search queries and social media, but also cloud-based electronic health records and human mobility patterns inferred from census information — are making it increasingly possible to monitor the spread of flu through the population by following its digital signal. Now, models that track flu in real time and forecast flu trends are making inroads into public-health practice.
“We’re becoming much more comfortable with how these models perform,” says Matthew Biggerstaff, an epidemiologist who works on flu preparedness at the US Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia.
In 2013–14, the CDC launched the FluSight Network, a website informed by digital modelling that predicts the timing, peak and short-term intensity of the flu season in ten regions of the United States and across the whole country. According to Biggerstaff, flu forecasting helps responders to plan ahead, so they can be ready with vaccinations and communication strategies to limit the effects of the virus. Encouraged by progress in the field, the CDC announced in January 2019 that it will spend US$17.5 million to create a network of influenza-forecasting centres of excellence, each tasked with improving the accuracy and communication of real-time forecasts.
The CDC is leading the way on digital flu surveillance, but health agencies elsewhere are following suit. “We’ve been working to develop and apply these models with collaborators using a range of data sources,” says Richard Pebody, a consultant epidemiologist at Public Health England in London. The capacity to predict flu trajectories two to three weeks in advance, Pebody says, “will be very valuable for health-service planning.”…(More)”.