Using data and design to support people to stay in work


 at Civil Service Quarterly: “…Data and digital are fairly understandable concepts in policy-making. But design? Why is it one of the three Ds?

Policy Lab believes that design approaches are particularly suited to complex issues that have multiple causes and for which there is no one, simple answer. Design encourages people to think about the user’s needs (not just the organisation’s needs), brings in different perspectives to innovate new ideas, and then prototypes (mocks them up and tries them out) to iteratively improve ideas until they find one that can be scaled up.

Composite graph and segmentation analysis collection
Segmentation analysis of those who reported being on health-related benefits in the Understanding Society survey

Policy Lab also recognises that data alone cannot solve policy problems, and has been experimenting with how to combine numerical and more human practices. Data can explain what is happening, while design research methods – such as ethnography, observing people’s behaviours – can explain why things are happening. Data can be used to automate and tailor public services; while design means frontline delivery staff and citizens will actually know about and use them. Data-rich evidence is highly valued by policy-makers; and design can make it understandable and accessible to a wider group of people, opening up policy-making in the process.

The Lab is also experimenting with new data methods.

Data science can be used to look at complex, unstructured data (social media data, for example), in real time. Digital data, such as social media data or internet searches, can reveal how people behave (rather than how they say they behave). It can also look at huge amounts of data far quicker than humans, and find unexpected patterns hidden in the data. Powerful computers can identify trends from historical data and use these to predict what might happen in the future.

Supporting people in work project

The project took a DDD approach to generating insight and then creating ideas. The team (including the data science organisation Mastodon C and design agency Uscreates) used data science techniques together with ethnography to create a rich picture about what was happening. Then it used design methods to create ideas for digital services with the user in mind, and these were prototyped and tested with users.

The data science confirmed many of the known risk factors, but also revealed some new insights. It told us what was happening at scale, and the ethnography explained why.

  • The data science showed that people were more likely to go onto sickness benefits if they had been in the job a shorter time. The ethnography explained that the relationship with the line manager and a sense of loyalty were key factors in whether someone stayed in work or went onto benefits.
  • The data science showed that women with clinical depression were less likely to go onto sickness benefits than men with the same condition. The ethnography revealed how this played out in real life:
    • For example, Ella [not her real name], a teacher from London who had been battling with depression at work for a long time but felt unable to go to her boss about it. She said she was “relieved” when she got cancer, because she could talk to her boss about a physical condition and got time off to deal with both illnesses.
  • The data science also allowed the segmentation of groups of people who said they were on health-related benefits. Firstly, the clustering revealed that two groups had average health ratings, indicating that other non-health-related issues might be driving this. Secondly, it showed that these two groups were very different (one older group of men with previously high pay and working hours; the other of much younger men with previously low pay and working hours). The conclusion was that their motivations and needs to stay in work – and policy interventions – would be different.
  • The ethnography highlighted other issues that were not captured in the data but would be important in designing solutions, such as: a lack of shared information across the system; the need of the general practitioner (GP) to refer patients to other non-health services as well as providing a fit note; and the importance of coaching, confidence-building and planning….(More)”

Data Maturity Framework


Center for Data Science and Public Policy: “Want to know if your organization is ready to start a data-driven social impact project? See where you are in our data maturity framework and how to improve your organizational, tech, and data readiness.

The Data Maturity Framework has three content areas:

  • Problem Definition
  • Data and Technology Readiness
  • Organizational Readiness

The Data Maturity Framework consists of:

  • A questionnaire and survey to assess readiness
  • Data and Technology Readiness Matrix
  • Organizational Readiness Matrix

The framework materials can be downloaded here, and you can complete our survey here. When we collect enough responses from enough organizations, we’ll launch an aggregate benchmarking report around the state of data in non-profits and government organizations. We ask that each problem be entered as a separate entry (rather than multiple problems from one organization entered in the same response).

We have adapted the Data Maturity Framework for specific projects:

Public services and the new age of data


 at Civil Service Quaterly: “Government holds massive amounts of data. The potential in that data for transforming the way government makes policy and delivers public services is equally huge. So, getting data right is the next phase of public service reform. And the UK Government has a strong foundation on which to build this future.

Public services have a long and proud relationship with data. In 1858, more than 50 years before the creation of the Cabinet Office, Florence Nightingale produced her famous ‘Diagram of the causes of mortality in the army in the east’ during the Crimean War. The modern era of statistics in government was born at the height of the Second World War with the creation of the Central Statistical Office in 1941.

How data can help

However, the huge advances we’ve seen in technology mean there are significant new opportunities to use data to improve public services. It can help us:

  • understand what works and what doesn’t, through data science techniques, so we can make better decisions: improving the way government works and saving money
  • change the way that citizens interact with government through new better digital services built on reliable data;.
  • boost the UK economy by opening and sharing better quality data, in a secure and sensitive way, to stimulate new data-based businesses
  • demonstrate a trustworthy approach to data, so citizens know more about the information held about them and how and why it’s being used

In 2011 the Government embarked upon a radical improvement in its digital capability with the creation of the Government Digital Service, and over the last few years we have seen a similar revolution begin on data. Although there is much more to do, in areas like open data, the UK is already seen as world-leading.

…But if government is going to seize this opportunity, it needs to make some changes in:

  • infrastructure – data is too often hard to find, hard to access, and hard to work with; so government is introducing developer-friendly open registers of trusted core data, such as countries and local authorities, and better tools to find and access personal data where appropriate through APIs for transformative digital services;
  • approach – we need the right policies in place to enable us to get the most out of data for citizens and ensure we’re acting appropriately; and the introduction of new legislation on data access will ensure government is doing the right thing – for example, through the data science code of ethics;
  • data science skills – those working in government need the skills to be confident with data; that means recruiting more data scientists, developing data science skills across government, and using those skills on transformative projects….(More)”.

How the Circle Line rogue train was caught with data


Daniel Sim at the Data.gov.sg Blog: “Singapore’s MRT Circle Line was hit by a spate of mysterious disruptions in recent months, causing much confusion and distress to thousands of commuters.

Like most of my colleagues, I take a train on the Circle Line to my office at one-north every morning. So on November 5, when my team was given the chance to investigate the cause, I volunteered without hesitation.

 From prior investigations by train operator SMRT and the Land Transport Authority (LTA), we already knew that the incidents were caused by some form of signal interference, which led to loss of signals in some trains. The signal loss would trigger the emergency brake safety feature in those trains and cause them to stop randomly along the tracks.

But the incidents — which first happened in August — seemed to occur at random, making it difficult for the investigation team to pinpoint the exact cause.

We were given a dataset compiled by SMRT that contained the following information:

  • Date and time of each incident
  • Location of incident
  • ID of train involved
  • Direction of train…

LTA and SMRT eventually published a joint press release on November 11 to share the findings with the public….

When we first started, my colleagues and I were hoping to find patterns that may be of interest to the cross-agency investigation team, which included many officers at LTA, SMRT and DSTA. The tidy incident logs provided by SMRT and LTA were instrumental in getting us off to a good start, as minimal cleaning up was required before we could import and analyse the data. We were also gratified by the effective follow-up investigations by LTA and DSTA that confirmed the hardware problems on PV46.

From the data science perspective, we were lucky that incidents happened so close to one another. That allowed us to identify both the problem and the culprit in such a short time. If the incidents were more isolated, the zigzag pattern would have been less apparent, and it would have taken us more time — and data — to solve the mystery….(More).”

The ethical impact of data science


Theme issue of Phil. Trans. R. Soc. A compiled and edited by Mariarosaria Taddeo and Luciano Floridi: “This theme issue has the founding ambition of landscaping data ethics as a new branch of ethics that studies and evaluates moral problems related to data (including generation, recording, curation, processing, dissemination, sharing and use), algorithms (including artificial intelligence, artificial agents, machine learning and robots) and corresponding practices (including responsible innovation, programming, hacking and professional codes), in order to formulate and support morally good solutions (e.g. right conducts or right values). Data ethics builds on the foundation provided by computer and information ethics but, at the same time, it refines the approach endorsed so far in this research field, by shifting the level of abstraction of ethical enquiries, from being information-centric to being data-centric. This shift brings into focus the different moral dimensions of all kinds of data, even data that never translate directly into information but can be used to support actions or generate behaviours, for example. It highlights the need for ethical analyses to concentrate on the content and nature of computational operations—the interactions among hardware, software and data—rather than on the variety of digital technologies that enable them. And it emphasizes the complexity of the ethical challenges posed by data science. Because of such complexity, data ethics should be developed from the start as a macroethics, that is, as an overall framework that avoids narrow, ad hoc approaches and addresses the ethical impact and implications of data science and its applications within a consistent, holistic and inclusive framework. Only as a macroethics will data ethics provide solutions that can maximize the value of data science for our societies, for all of us and for our environments….(More)”

Table of Contents:

  • The dynamics of big data and human rights: the case of scientific research; Effy Vayena, John Tasioulas
  • Facilitating the ethical use of health data for the benefit of society: electronic health records, consent and the duty of easy rescue; Sebastian Porsdam Mann, Julian Savulescu, Barbara J. Sahakian
  • Faultless responsibility: on the nature and allocation of moral responsibility for distributed moral actions; Luciano Floridi
  • Compelling truth: legal protection of the infosphere against big data spills; Burkhard Schafer
  • Locating ethics in data science: responsibility and accountability in global and distributed knowledge production systems; Sabina Leonelli
  • Privacy is an essentially contested concept: a multi-dimensional analytic for mapping privacy; Deirdre K. Mulligan, Colin Koopman, Nick Doty
  • Beyond privacy and exposure: ethical issues within citizen-facing analytics; Peter Grindrod
  • The ethics of smart cities and urban science; Rob Kitchin
  • The ethics of big data as a public good: which public? Whose good? Linnet Taylor
  • Data philanthropy and the design of the infraethics for information societies; Mariarosaria Taddeo
  • The opportunities and ethics of big data: practical priorities for a national Council of Data Ethics; Olivia Varley-Winter, Hetan Shah
  • Data science ethics in government; Cat Drew
  • The ethics of data and of data science: an economist’s perspective; Jonathan Cave
  • What’s the good of a science platform? John Gallacher

 

Data Ethics: Investing Wisely in Data at Scale


Report by David Robinson & Miranda Bogen prepared for the MacArthur and Ford Foundations: ““Data at scale” — digital information collected, stored and used in ways that are newly feasible — opens new avenues for philanthropic investment. At the same time, projects that leverage data at scale create new risks that are not addressed by existing regulatory, legal and best practice frameworks. Data-oriented projects funded by major foundations are a natural proving ground for the ethical principles and controls that should guide the ethical treatment of data in the social sector and beyond.

This project is an initial effort to map the ways that data at scale may pose risks to philanthropic priorities and beneficiaries, for grantmakers at major foundations, and draws from desk research and unstructured interviews with key individuals involved in the grantmaking enterprise at major U.S. foundations. The resulting report was prepared at the joint request of the MacArthur and Ford Foundations.

Grantmakers are exploring data at scale, but currently have poor visibility into its benefits and risks. Rapid technological change, the scarcity of data science expertise, limited training and resources, and a lack of clear guideposts around emergent risks all contribute to this problem.

Funders have important opportunities to invest in, learn from, and innovate around data-intensive projects, in concert with their grantees. Grantmakers should not treat the new ethical risks of data at scale as a barrier to investment, but these risks also must not become a blind spot that threatens the success and effectiveness of philanthropic projects. Those working with data at scale in the philanthropic context have much to learn: throughout our conversations with stakeholders, we heard consistently that grantmakers and grantees lack baseline knowledge on using data at scale, and many said that they are unsure how to make better informed decisions, both about data’s benefits and about its risks. Existing frameworks address many risks introduced by data-intensive grantmaking, but leave some major gaps. In particular, we found that:

  • Some new data-intensive research projects involve meaningful risk to vulnerable populations, but are not covered by existing human subjects regimes, and lack a structured way to consider these risks. In the philanthropic and public sector, human subject review is not always required and program officers, researchers, and implementers do not yet have a shared standard by which to evaluate ethical implications of using public or existing data, which is often exempt from human subjects review.
  • Social sector projects often depend on data that reflects patterns of bias or discrimination against vulnerable groups, and face a challenge of how to avoid reinforcing existing disparities. Automated decisions can absorb and sanitize bias from input data, and responsibly funding or evaluating statistical models in data-intensive projects increasingly demands advanced mathematical literacy which foundations lack.
  • Both data and the capacity to analyze it are being concentrated in the private sector, which could marginalize academic and civil society actors.Some individuals and organizations have begun to call attention to these issues and create their own trainings, guidelines, and policies — but ad hoc solutions can only accomplish so much.

To address these and other challenges, we’ve identified eight key questions that program staff and grantees need to consider in data-intensive work:

  1. For a given project, what data should be collected, and who should have access to it?
  2. How can projects decide when more data will help — and when it won’t?
  3. How can grantmakers best manage the reputational risk of data-oriented projects that may be at a frontier of social acceptability?
  4. When concerns are recognized with respect to a data-intensive grant, how will those concerns get aired and addressed?
  5. How can funders and grantees gain the insight they need in order to critique other institutions’ use of data at scale?
  6. How can the social sector respond to the unique leverage and power that large technology companies are developing through their accumulation of data and data-related expertise?
  7. How should foundations and nonprofits handle their own data?
  8. How can foundations begin to make the needed long term investments in training and capacity?

Newly emergent ethical issues inherent in using data at scale point to the need for both a broader understanding of the possibilities and challenges of using data in the philanthropic context as well as conscientious treatment of data ethics issues. Major foundations can play a meaningful role in building a broader understanding of these possibilities and challenges, and they can set a positive example in creating space for open and candid reflection on these issues. To those ends, we recommend that funders:…(More)”

Data governance: a Royal Society and British Academy project


Call for Evidence from The British Academy and the Royal Society: “…The project seeks to make recommendations for cross-sectoral governance arrangements that can ensure the UK remains a world leader in this area. The project will draw on scholars and scientists from across disciplines and will look at current and historical case studies of data governance, and of broader technology governance, from a range of countries and sectors. It will seek to enable connected debate by creating common frameworks to move debates on data governance forward.

Background

It is essential to get the best possible environment for the safe and rapid use of data in order to enhance UK’s wellbeing, security and economic growth. The UK has world class academic expertise in data science, in ethics and aspects other of governance; and it has a rapidly growing tech sector and there is a real opportunity for the UK to lead internationally in creating insights and mechanisms for enabling the new data sciences to benefit society.

While there are substantial arrangements in place for the safe use of data in the UK, these inevitably were designed early in the days of information technology and tend to rest on outdated notions of privacy and consent. In addition, newer considerations such as statistical stereotyping and bias in datasets, and implications for the freedom of choice, autonomy and equality of opportunity of individuals, come to the fore in this new technological context, as do transparency, accountability and openness of decision making.

Terms of Reference

The project seeks to:

  • Identify the communities with interests in the governance of data and its uses, but which may be considering these issues in different contexts and with varied aims and assumptions, in order to facilitate dialogue between these communities. These include academia, industry and the public sector.
  • Clarify where there are connections between different debates, identifying shared issues and common questions, and help to develop a common framework and shared language for debate.
  • Identify which social, ethical and governance challenges arise in the context of developments in data use.
  • Set out the public interests at stake in governance of data and its uses, and the relationships between them, and how the principles of responsible research and innovation (RRI) apply in the context of data use.
  • Make proposals for the UK to establish a sustained and flexible platform for debating issues of data governance, developing consensus about future legal and technical frameworks, and ensuring that learning and good practice spreads as fast as possible….(More)”

How Technology is Crowd-Sourcing the Fight Against Hunger


Beth Noveck at Media Planet: “There is more than enough food produced to feed everyone alive today. Yet access to nutritious food is a challenge everywhere and depends on getting every citizen involved, not just large organizations. Technology is helping to democratize and distribute the job of tackling the problem of hunger in America and around the world.

Real-time research

One of the hardest problems is the difficulty of gaining real-time insight into food prices and shortages. Enter technology. We no longer have to rely on professional inspectors slowly collecting information face-to-face. The UN World Food Programme, which provides food assistance to 80 million people each year, together with Nielsen is conducting mobile phone surveys in 15 countries (with plans to expand to 30), asking people by voice and text about what they are eating. Formerly blank maps are now filled in with information provided quickly and directly by the most affected people, making it easy to prioritize the allocation of resources.

Technology helps the information flow in both directions, enabling those in need to reach out, but also to become more effective at helping themselves. The Indian Ministry of Agriculture, in collaboration with Reuters Market Light, provides information services in nine Indian languages to 1.4 million registered farmers in 50,000 villages across 17 Indian states via text and voice messages.

“In the United States, 40 percent of the food produced here is wasted, and yet 1 in 4 American children (and 1 in 6 adults) remain food insecure…”

Data to the people

New open data laws and policies that encourage more transparent publication of public information complement data collection and dissemination technologies such as phones and tablets. About 70 countries and hundreds of regions and cities have adopted open data policies, which guarantee that the information these public institutions collect be available for free use by the public. As a result, there are millions of open datasets now online on websites such as the Humanitarian Data Exchange, which hosts 4,000 datasets such as country-by-country stats on food prices and undernourishment around the world.

Companies are compiling and sharing data to combat food insecurity, too. Anyone can dig into the data on the Global Open Data for Agriculture and Nutrition platform, a data collaborative where 300 private and public partners are sharing information.

Importantly, this vast quantity of open data is available to anyone, not only to governments. As a result, large and small entrepreneurs are able to create new apps and programs to combat food insecurity, such as Plantwise, which uses government data to offer a knowledge bank and run “plant clinics” that help farmers lose less of what they grow to pests. Google uses open government data to show people the location of farmers markets near their homes.

Students, too, can learn to play a role. For the second summer in a row, the Governance Lab at New York University, in partnership with the United States Department of Agriculture (USDA), mounted a two-week open data summer camp for 40 middle and high school students. The next generation of problem solvers is learning new data science skills by working on food safety and other projects using USDA open data.

Enhancing connection

Ultimately, technology enables greater communication and collaboration among the public, social service organizations, restaurants, farmers and other food producers who must work together to avoid food crises. The European Food Safety Authority in Italy has begun exploring how to use internet-based collaboration (often called citizen science or crowdsourcing) to get more people involved in food and feed risk assessment.

In the United States, 40 percent of the food produced here is wasted, and yet 1 in 4 American children (and 1 in 6 adults) remain food insecure, according to the Rockefeller Foundation. Copia, a San Francisco based smartphone app facilitates donations and deliveries of those with excess food in six cities in the Bay Area. Zero Percent in Chicago similarly attacks the distribution problem by connecting restaurants to charities to donate their excess food. Full Harvest is a tech platform that facilitates the selling of surplus produce that otherwise would not have a market.

Mobilizing the world

Prize-backed challenges create the incentives for more people to collaborate online and get involved in the fight against hunger….(More)”

Living in the World of Both/And


Essay by Adene Sacks & Heather McLeod Grant  in SSIR: “In 2011, New York Times data scientist Jake Porway wrote a blog post lamenting the fact that most data scientists spend their days creating apps to help users find restaurants, TV shows, or parking spots, rather than addressing complicated social issues like helping identify which teens are at risk of suicide or creating a poverty index of Africa using satellite data.

That post hit a nerve. Data scientists around the world began clamoring for opportunities to “do good with data.” Porway—at the center of this storm—began to convene these scientists and connect them to nonprofits via hackathon-style events called DataDives, designed to solve big social and environmental problems. There was so much interest, he eventually quit his day job at the Times and created the organization DataKind to steward this growing global network of data science do-gooders.

At the same time, in the same city, another movement was taking shape—#GivingTuesday, an annual global giving event fueled by social media. In just five years, #GivingTuesday has reshaped how nonprofits think about fundraising and how donors give. And yet, many don’t know that 92nd Street Y (92Y)—a 140-year-old Jewish community and cultural center in Manhattan, better known for its star-studded speaker series, summer camps, and water aerobics classes—launched it.

What do these two examples have in common? One started as a loose global network that engaged data scientists in solving problems, and then became an organization to help support the larger movement. The other started with a legacy organization, based at a single site, and catalyzed a global movement that has reshaped how we think about philanthropy. In both cases, the founding groups have incorporated the best of both organizations and networks.

Much has been written about the virtues of thinking and acting collectively to solve seemingly intractable challenges. Nonprofit leaders are being implored to put mission above brand, build networks not just programs, and prioritize collaboration over individual interests. And yet, these strategies are often in direct contradiction to the conventional wisdom of organization-building: differentiating your brand, developing unique expertise, and growing a loyal donor base.

A similar tension is emerging among network and movement leaders. These leaders spend their days steering the messy process required to connect, align, and channel the collective efforts of diverse stakeholders. It’s not always easy: Those searching to sustain movements often cite the lost momentum of the Occupy movement as a cautionary note. Increasingly, network leaders are looking at how to adapt the process, structure, and operational expertise more traditionally associated with organizations to their needs—but without co-opting or diminishing the energy and momentum of their self-organizing networks…

Welcome to the World of “Both/And”

Today’s social change leaders—be they from business, government, or nonprofits—must learn to straddle the leadership mindsets and practices of both networks and organizations, and know when to use which approach. Leaders like Porway, and Henry Timms and Asha Curran of 92Y can help show us the way.

How do these leaders work with the “both/and” mindset?

First, they understand and leverage the strengths of both organizations and networks—and anticipate their limitations. As Timms describes it, leaders need to be “bilingual” and embrace what he has called “new power.” Networks can be powerful generators of new talent or innovation around complex multi-sector challenges. It’s useful to take a network approach when innovating new ideas, mobilizing and engaging others in the work, or wanting to expand reach and scale quickly. However, networks can dissipate easily without specific “handrails,” or some structure to guide and support their work. This is where they need some help from the organizational mindset and approach.

On the flip side, organizations are good at creating centralized structures to deliver products or services, manage risk, oversee quality control, and coordinate concrete functions like communications or fundraising. However, often that efficiency and effectiveness can calcify over time, becoming a barrier to new ideas and growth opportunities. When organizational boundaries are too rigid, it is difficult to engage the outside world in ideating or mobilizing on an issue. This is when organizations need an infusion of the “network mindset.”

 

…(More)

Recent Developments in Open Data Policy


Presentation by Paul Uhlir:  “Several International organizations have issued policy statements on open data policies in the past two years. This presentation provides an overview of those statements and their relevance to developing countries.

International Statements on Open Data Policy

Open data policies have become much more supported internationally in recent years. Policy statements in just the most recent 2014-2016 period that endorse and promote openness to research data derived from public funding include: the African Data Consensus (UNECA 2014); the CODATA Nairobi Principles for Data Sharing for Science and Development in Developing Countries (PASTD 2014); the Hague Declaration on Knowledge Discovery in the Digital Age (LIBER 2014); Policy Guidelines for Open Access and Data Dissemination and Preservation (RECODE 2015); Accord on Open Data in a Big Data World (Science International 2015). This presentation will present the principal guidelines of these policy statements.

The Relevance of Open Data from Publicly Funded Research for Development

There are many reasons that publicly funded research data should be made as freely and openly available as possible. Some of these are noted here, although many other benefits are possible. For research, it is closing the gap with more economically developed countries, making researchers more visible on the web, enhancing their collaborative potential, and linking them globally. For educational benefits, open data assists greatly in helping students learn how to do data science and to manage data better. From a socioeconomic standpoint, open data policies have been shown to enhance economic opportunities and to enable citizens to improve their lives in myriad ways. Such policies are more ethical in allowing access to those that have no means to pay and not having to pay for the data twice—once through taxes to create the data in the first place and again at the user level . Finally, access to factual data can improve governance, leading to better decision making by policymakers, improved oversight by constituents, and digital repatriation of objects held by former colonial powers.

Some of these benefits are cited directly in the policy statements themselves, while others are developed more fully in other documents (Bailey Mathae and Uhlir 2012, Uhlir 2015). Of course, not all publicly funded data and information can be made available and there are appropriate reasons—such as the protection of national security, personal privacy, commercial concerns, and confidentiality of all kinds—that make the withholding of them legal and ethical. However, the default rule should be one of openness, balanced against a legitimate reason not to make the data public….(More)”