The ethical impact of data science


Theme issue of Phil. Trans. R. Soc. A compiled and edited by Mariarosaria Taddeo and Luciano Floridi: “This theme issue has the founding ambition of landscaping data ethics as a new branch of ethics that studies and evaluates moral problems related to data (including generation, recording, curation, processing, dissemination, sharing and use), algorithms (including artificial intelligence, artificial agents, machine learning and robots) and corresponding practices (including responsible innovation, programming, hacking and professional codes), in order to formulate and support morally good solutions (e.g. right conducts or right values). Data ethics builds on the foundation provided by computer and information ethics but, at the same time, it refines the approach endorsed so far in this research field, by shifting the level of abstraction of ethical enquiries, from being information-centric to being data-centric. This shift brings into focus the different moral dimensions of all kinds of data, even data that never translate directly into information but can be used to support actions or generate behaviours, for example. It highlights the need for ethical analyses to concentrate on the content and nature of computational operations—the interactions among hardware, software and data—rather than on the variety of digital technologies that enable them. And it emphasizes the complexity of the ethical challenges posed by data science. Because of such complexity, data ethics should be developed from the start as a macroethics, that is, as an overall framework that avoids narrow, ad hoc approaches and addresses the ethical impact and implications of data science and its applications within a consistent, holistic and inclusive framework. Only as a macroethics will data ethics provide solutions that can maximize the value of data science for our societies, for all of us and for our environments….(More)”

Table of Contents:

  • The dynamics of big data and human rights: the case of scientific research; Effy Vayena, John Tasioulas
  • Facilitating the ethical use of health data for the benefit of society: electronic health records, consent and the duty of easy rescue; Sebastian Porsdam Mann, Julian Savulescu, Barbara J. Sahakian
  • Faultless responsibility: on the nature and allocation of moral responsibility for distributed moral actions; Luciano Floridi
  • Compelling truth: legal protection of the infosphere against big data spills; Burkhard Schafer
  • Locating ethics in data science: responsibility and accountability in global and distributed knowledge production systems; Sabina Leonelli
  • Privacy is an essentially contested concept: a multi-dimensional analytic for mapping privacy; Deirdre K. Mulligan, Colin Koopman, Nick Doty
  • Beyond privacy and exposure: ethical issues within citizen-facing analytics; Peter Grindrod
  • The ethics of smart cities and urban science; Rob Kitchin
  • The ethics of big data as a public good: which public? Whose good? Linnet Taylor
  • Data philanthropy and the design of the infraethics for information societies; Mariarosaria Taddeo
  • The opportunities and ethics of big data: practical priorities for a national Council of Data Ethics; Olivia Varley-Winter, Hetan Shah
  • Data science ethics in government; Cat Drew
  • The ethics of data and of data science: an economist’s perspective; Jonathan Cave
  • What’s the good of a science platform? John Gallacher