Too many AI researchers think real-world problems are not relevant


Essay by Hannah Kerner: “Any researcher who’s focused on applying machine learning to real-world problems has likely received a response like this one: “The authors present a solution for an original and highly motivating problem, but it is an application and the significance seems limited for the machine-learning community.”

These words are straight from a review I received for a paper I submitted to the NeurIPS (Neural Information Processing Systems) conference, a top venue for machine-learning research. I’ve seen the refrain time and again in reviews of papers where my coauthors and I presented a method motivated by an application, and I’ve heard similar stories from countless others.

This makes me wonder: If the community feels that aiming to solve high-impact real-world problems with machine learning is of limited significance, then what are we trying to achieve?

The goal of artificial intelligence (pdf) is to push forward the frontier of machine intelligence. In the field of machine learning, a novel development usually means a new algorithm or procedure, or—in the case of deep learning—a new network architecture. As others have pointed out, this hyperfocus on novel methods leads to a scourge of papers that report marginal or incremental improvements on benchmark data sets and exhibit flawed scholarship (pdf) as researchers race to top the leaderboard.

Meanwhile, many papers that describe new applications present both novel concepts and high-impact results. But even a hint of the word “application” seems to spoil the paper for reviewers. As a result, such research is marginalized at major conferences. Their authors’ only real hope is to have their papers accepted in workshops, which rarely get the same attention from the community.

This is a problem because machine learning holds great promise for advancing health, agriculture, scientific discovery, and more. The first image of a black hole was produced using machine learning. The most accurate predictions of protein structures, an important step for drug discovery, are made using machine learning. If others in the field had prioritized real-world applications, what other groundbreaking discoveries would we have made by now?

This is not a new revelation. To quote a classic paper titled “Machine Learning that Matters” (pdf), by NASA computer scientist Kiri Wagstaff: “Much of current machine learning research has lost its connection to problems of import to the larger world of science and society.” The same year that Wagstaff published her paper, a convolutional neural network called AlexNet won a high-profile competition for image recognition centered on the popular ImageNet data set, leading to an explosion of interest in deep learning. Unfortunately, the disconnect she described appears to have grown even worse since then….(More)”.