Open-Access AI: Lessons From Open-Source Software


Article by Parth NobelAlan Z. RozenshteinChinmayi Sharma: “Before analyzing how the lessons of open-source software might (or might not) apply to open-access AI, we need to define our terms and explain why we use the term “open-access AI” to describe models like Llama rather than the more commonly used “open-source AI.” We join many others in arguing that “open-source AI” is a misnomer for such models. It’s misleading to fully import the definitional elements and assumptions that apply to open-source software when talking about AI. Rhetoric matters, and the distinction isn’t just semantic; it’s about acknowledging the meaningful differences in access, control, and development. 

The software industry definition of “open source” grew out of the free software movement, which makes the point that “users have the freedom to run, copy, distribute, study, change and improve” software. As the movement emphasizes, one should “think of ‘free’ as in ‘free speech,’ not as in ‘free beer.’” What’s “free” about open-source software is that users can do what they want with it, not that they initially get it for free (though much open-source software is indeed distributed free of charge). This concept is codified by the Open Source Initiative as the Open Source Definition (OSD), many aspects of which directly apply to Llama 3.2. Llama 3.2’s license makes it freely redistributable by license holders (Clause 1 of the OSD) and allows the distribution of the original models, their parts, and derived works (Clauses 3, 7, and 8). ..(More)”.