Explore our articles
citizen engagement, PEOPLE
Share:

Leveraging LLMs for Privacy-Aware Predictions in Participatory Budgeting

Paper by Juan Zambrano et al: “Participatory Budgeting (PB) empowers citizens to propose and vote on public investment projects. Yet, despite its democratic potential, PB initiatives often suffer from low participation rates, limiting their visibility and perceived legitimacy. In this work, we aim to strengthen PB elections in two key ways: by supporting project proposers in crafting better proposals, and by helping PB organizers manage large volumes of submissions in a transparent manner. We propose a privacy-preserving approach to predict which PB proposals are likely to be funded, using only their textual descriptions and anonymous historical voting records — without relying on voter demographics or personally identifiable information. We evaluate the performance of GPT 4 Turbo in forecasting proposal outcomes across varying contextual scenarios, observing that the LLM’s prior knowledge needs to be complemented by past voting data to obtain predictions reflecting real-world PB voting behavior. Our findings highlight the potential of AI-driven tools to support PB processes by improving transparency, planning efficiency, and civic engagement…(More)”.

Share
How to contribute:

Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?

Share it with us at info@thelivinglib.org so that we can add it to the Collection!

About the Curator

Get the latest news right in you inbox

Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday

Related articles

Get the latest news right in you inbox

Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday